1,122 research outputs found

    Assessment of eosinophils in gastrointestinal inflammatory disease of dogs

    Get PDF
    Background Accurate identification of eosinophils in the gastrointestinal (GI) tract of dogs with eosinophilic GI disease (EGID) by histological evaluation is challenging. The currently used hematoxylin and eosin (H&E) staining method detects intact eosinophils but does not detect degranulated eosinophils, thus potentially underrepresenting the number of infiltrating eosinophils. Objective To develop a more sensitive method for identifying and quantifying both intact and degranulated eosinophils to diagnose EGID more accurately. Methods Endoscopically obtained paraffin‐embedded intestinal biopsy specimens from dogs with GI signs were examined. The study groups were dogs with eosinophilic enteritis (EE), lymphoplasmacytic and mixed enteritis, and control dogs with GI signs but no histologic changes on tissue sections. Consecutive sections were immunolabeled with monoclonal antibodies (mAbs) against the eosinophil granule protein eosinophil peroxidase (Epx) and stained by H&E, respectively. The number of eosinophils was manually quantified and classified as intact or degranulated. Results The number of intact eosinophils detected in Epx mAb‐labeled duodenal sections was significantly higher compared with that in H&E‐stained sections, with a similar relationship noted in the colon and stomach. The Epx mAb allowed the unique assessment of eosinophil degranulation. The number of intact and degranulated eosinophils was significantly higher in duodenal lamina propria of the EE and mixed group compared to the control group. Conclusion Immunohistochemical detection of Epx provides a more precise method to detect GI tract eosinophils compared to H&E staining and could be used as an alternative and reliable diagnostic tool for assessment of biopsy tissues from dogs with EGID

    An Integrated Declarative Approach to Web Services Composition and Monitoring

    Get PDF
    International audienceIn this paper we propose a constraint based declarative approach for Web services composition and monitoring problem. Our approach allows user to build the abstract composition by identifying the participating entities and by providing a set of constraints that mark the boundary of the solution. Different types of constraints have been proposed to handle the composition modeling and monitoring. Abstract composition is then used for instantiating the concrete composition, which both finds and executes an instantiation respecting constraints, and also handles the process run-time monitoring. When compared to the traditional approaches, our approach is declarative and allows for the same set of constraints to be used for composition modeling and monitoring and thus allows for refining the abstract composition as a result of run-time violations, such as service failure or response time delays

    Nonintegrable Interaction of Ion-Acoustic and Electromagnetic Waves in a Plasma

    Full text link
    In this paper we re-examine the one-dimensional interaction of electromagnetic and ion acoustic waves in a plasma. Our model is similar to one solved by Rao et al. (Phys. Fluids, vol. 26, 2488 (1983)) under a number of analytical approximations. Here we perform a numerical investigation to examine the stability of the model. We find that for slightly over dense plasmas, the propagation of stable solitary modes can occur in an adiabatic regime where the ion acoustic electric field potential is enslaved to the electromagnetic field of a laser. But if the laser intensity or plasma density increases or the laser frequency decreases, the adiabatic regime loses stability via a transition to chaos. New asymptotic states are attained when the adiabatic regime no longer exists. In these new states, the plasma becomes rarefied, and the laser field tends to behave like a vacuum field.Comment: 19 pages, REVTeX, 6 ps figures, accepted for publication in Phys. Rev.

    A Honeycomb Proportional Counter for Photon Multiplicity Measurement in the ALICE Experiment

    Full text link
    A honeycomb detector consisting of a matrix of 96 closely packed hexagonal cells, each working as a proportional counter with a wire readout, was fabricated and tested at the CERN PS. The cell depth and the radial dimensions of the cell were small, in the range of 5-10 mm. The appropriate cell design was arrived at using GARFIELD simulations. Two geometries are described illustrating the effect of field shaping. The charged particle detection efficiency and the preshower characteristics have been studied using pion and electron beams. Average charged particle detection efficiency was found to be 98%, which is almost uniform within the cell volume and also within the array. The preshower data show that the transverse size of the shower is in close agreement with the results of simulations for a range of energies and converter thicknesses.Comment: To be published in NIM

    Photoconductance Quantization in a Single-Photon Detector

    Get PDF
    We have made a single-photon detector that relies on photoconductive gain in a narrow electron channel in an AlGaAs/GaAs 2-dimensional electron gas. Given that the electron channel is 1-dimensional, the photo-induced conductance has plateaus at multiples of the quantum conductance 2e2^{2}/h. Super-imposed on these broad conductance plateaus are many sharp, small, conductance steps associated with single-photon absorption events that produce individual photo-carriers. This type of photoconductive detector could measure a single photon, while safely storing and protecting the spin degree of freedom of its photo-carrier. This function is valuable for a quantum repeater that would allow very long distance teleportation of quantum information.Comment: 4 pages, 4 figure

    Stationary State Solutions of a Bond Diluted Kinetic Ising Model: An Effective-Field Theory Analysis

    Full text link
    We have examined the stationary state solutions of a bond diluted kinetic Ising model under a time dependent oscillating magnetic field within the effective-field theory (EFT) for a honeycomb lattice (q=3)(q=3). Time evolution of the system has been modeled with a formalism of master equation. The effects of the bond dilution, as well as the frequency (ω)(\omega) and amplitude (h/J)(h/J) of the external field on the dynamic phase diagrams have been discussed in detail. We have found that the system exhibits the first order phase transition with a dynamic tricritical point (DTCP) at low temperature and high amplitude regions, in contrast to the previously published results for the pure case \cite{Ling}. Bond dilution process on the kinetic Ising model gives rise to a number of interesting and unusual phenomena such as reentrant phenomena and has a tendency to destruct the first-order transitions and the DTCP. Moreover, we have investigated the variation of the bond percolation threshold as functions of the amplitude and frequency of the oscillating field.Comment: 8 pages, 4 figure

    Non-linear electrical response in a charge/orbital ordered Pr⁥0.63\Pr_{0.63}Ca0.37_{0.37}MnO3_3 crystal : the charge density wave analogy

    Full text link
    Non-linear conduction in a charge-ordered manganese oxide Pr0.63_{0.63}Ca0.37_{0.37}MnO3_3 is reported. To interpret such a feature, it is usually proposed that a breakdown of the charge or orbitally ordered state is induced by the current. The system behaves in such a way that the bias current may generate metallic paths giving rise to resistivity drop. One can describe this feature by considering the coexistence of localized and delocalized electron states with independent paths of conduction. This situation is reminiscent of what occurs in charge density wave systems where a similar non-linear conduction is also observed. In the light of recent experimental results suggesting the development of charge density waves in charge and orbitally ordered manganese oxides, a phenomenological model for charge density waves motion is used to describe the non-linear conduction in Pr0.63_{0.63}Ca0.37_{0.37}MnO3_3. In such a framework, the non-linear conduction arises from the motion of the charge density waves condensate which carries a net electrical current.Comment: 13 pages, 6 figure
    • 

    corecore