
HAL Id: inria-00431855
https://hal.inria.fr/inria-00431855

Submitted on 13 Nov 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Integrated Declarative Approach to Web Services
Composition and Monitoring

Ehtesham Zahoor, Olivier Perrin, Claude Godart

To cite this version:
Ehtesham Zahoor, Olivier Perrin, Claude Godart. An Integrated Declarative Approach to Web Ser-
vices Composition and Monitoring. 10th International Conference on Web Information Systems En-
gineering - WISE 2009, Oct 2009, Poznan, Poland. pp.247-260, �10.1007/978-3-642-04409-0_28�.
�inria-00431855�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50131361?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00431855
https://hal.archives-ouvertes.fr


An Integrated Declarative Approach to Web

Services Composition and Monitoring

Ehtesham Zahoor, Olivier Perrin, and Claude Godart

LORIA, INRIA Nancy Grand Est Campus Scientifique,
BP 239, 54506, Vandoeuvre-lès-Nancy Cedex, France

{ehtesham.zahoor,olivier.perrin,claude.godart}@loria.fr

Abstract. In this paper we propose a constraint based declarative ap-
proach for Web services composition and monitoring problem. Our ap-
proach allows user to build the abstract composition by identifying the
participating entities and by providing a set of constraints that mark the
boundary of the solution. Different types of constraints have been pro-
posed to handle the composition modeling and monitoring. Abstract com-

position is then used for instantiating the concrete composition, which
both finds and executes an instantiation respecting constraints, and also
handles the process run-time monitoring. When compared to the tradi-
tional approaches, our approach is declarative and allows for the same set
of constraints to be used for composition modeling and monitoring and
thus allows for refining the abstract composition as a result of run-time
violations, such as service failure or response time delays.

1 Introduction

Traditional Web services composition approaches (such as WS-BPEL and WS-
CDL) tackle the composition problem by focusing on the control flow of the
composition process. Although control over the composition process is critical,
in some cases it must be relaxed to some extent to make the process flexible, but
flexibility and control on the composition process are conflicting requirements.
We detail in this paper a sample crisis management scenario that highlights the
importance of proper balance between control and flexibility of the composition
process. A problem of traditional service composition approaches is that they
are procedural and as proposed in [14] they over constrain the composition pro-
cess making it rigid and not able to handle the dynamically changing situations.
Further the focus on data, temporal aspects and other non-functional require-
ments is not thoroughly investigated. Another important aspect is the run-time
monitoring of the composition process and although it is tightly coupled with
the composition process, it is not well integrated to the traditional composi-
tion approaches. Proposed solutions introduce a new layer for the composition
monitoring and thus does not provide the important execution time violations
feedback to the composition process. Finally, the scalability of the composition
process is an important factor as the number of available services to choose from



is increasing rapidly. As a result, exploring all possible solutions to the compo-
sition problem may not be a feasible option and some choices should be made
at different stages to avoid the solution explosion of the composition process.

In this paper we propose a constraint based declarative approach for Web
services composition and monitoring problem. Our approach allows user to build
the abstract composition by identifying the participating entities and by provid-
ing a set of constraints that mark the boundary of the solution. Different types
of constraints have been proposed to handle the composition modeling and mon-
itoring. Abstract composition is then used for instantiating the concrete compo-

sition, which both finds and executes an instantiation satisfying constraints, and
also handles the process run-time monitoring.

When compared to the traditional approaches, our approach is declarative
and allows for the same set of constraints to be used for composition modeling
and monitoring and thus allows for refining the composition model as a result
of run-time violation. Moreover, our approach models both the data and control
flow and the constraints include both the functional and non-functional spec-
ifications (such as security and temporal aspects on both control and data).
Further, in contrast to the procedural approaches, we propose a declarative ap-
proach to model the composition process. Then, our approach aims to target
the conflicting requirements of flexibility and control on the composition pro-
cess. At one hand, user can loosely constrain the composition process to provide
the composition engine the flexibility to choose the solution. On other hand user
can over constrain the composition process to focus on the control. Further, to
handle the scalability requirements our approach allows for one best matched
(user chosen) Web service as a result of node instantiation and handles the case
when the service selection choice needs to be backtracked based on dependency
between services and allows for propagation of newly chosen solution.

2 Motivation and related work

The motivation for our work stems from the process modeling and monitoring in
a crisis situation and we present a crisis management scenario that highlights the
benefits of the approach. A crisis situation is, by nature, a dynamic situation es-
pecially in its first phases. It also demands for a composition that is characterized
by temporal constraints, uncertainty, multiple and changing goals, coordination
of multiple services and multiple data sources, and require the composition pro-
cess to be more flexible to adapt to continuously changing environment. The
situations these ad hoc compositions are dealing with are complex, ambiguous,
and very dynamic. Information arrives from multiple sources, with varying de-
grees of reliability and in different formats. Information that was treated at time
t may be superseded by new information at time t+1.

The interesting concept with a crisis scenario is that it brings together two
related dimensions: organization and situation.Organization encompasses the de-
sign time composition modeling which involves identifying activities and control
and data flow between them. There have been many approaches to model this



dimension. Most of these approaches can be divided into Workflow composition
and AI planning based approaches, as discussed in [10]. The composition result
can be regarded as a workflow because it includes the atomic Web services and
the control and data flow between these services. Static workflow composition
approaches require an abstract composition to be specified and the selection and
binding is performed automatically by the Web services composition process,
while the dynamic workflow composition approaches require to both build the
abstract composition and select atomic service automatically based on user re-
quest as proposed in [11]. The composition process can also be regarded as a AI
planning problem assuming that each Web service can be specified by its pre-
conditions and effects (using situation calculus [5, 8], rule-based planning [6],
theorem proving [15] or other approaches including [13]).

The problem of traditional approaches (such as WS-BPEL or WS-CDL) is
that all what is not explicitly modeled is forbidden. These approaches have in
common that they are highly procedural, i.e., after the execution of a given ac-
tivity the next activities are scheduled. Seen from the viewpoint of an execution
language their procedural nature is not a problem [14]. However, unlike the mod-
ules inside a classical system, Web services tend to be rather autonomous and an
important challenge is that all parties involved need to agree on an overall global
process. Moreover, this way of modeling renders difficult to model complex or-
chestrations, i.e. those in which we need to express not only functional but also
non-functional requirements such as cardinality constraints (one or more exe-
cution), existence constraints, negative relationships between services, temporal
constraints on data or security requirements on services (separation of duties for
instance). With current approaches, the designer should explicitly enumerate all
the possible interactions and in turn over-constrain the orchestration. In case
of multiple constraints, the problem becomes even more difficult. Moreover, the
flexibility of the obtained model is really low as modifying one aspect (e.g. tem-
poral) has important side effects on other aspects (e.g. control flow or security).
A more detailed discussion can be found in [9]. When compared to other declar-
ative approaches [14, 9], our approach allows for the same set of constraints to
be used for both process modeling and monitoring.

The second dimension a crisis situation focuses on is the situation. The com-
position process to handle the crisis should be able to measure and to adapt to
continuously changing situation. This leads to the problem of Web services mon-
itoring and the approaches for dealing with Web services monitoring include [1,
2, 4]. The problem with current monitoring approaches is that they are mostly
proposed as a new layer to the procedural approaches such as WS-BPEL. As a
result, they are unable to bridge the gap between organization and situation in
a way that it is not possible to learn from run-time violations and to change the
process instance (or most importantly process model) at execution time.

The need of observability (the feedback that provides insight of a compo-
sition), the support of dynamicity (ability to change resources, services, and
ordering as situations change and evolve), the support of focus change (ability
to reorient focus in a dynamic environment), and the support of various perspec-



tives (ability to consider the organization given different points of view - control,
data,...) guide the motivation of our approach. We believe that the declarative
approach appears to be well adapted rather than the traditional imperative ap-
proach. Using a declarative language allows to concentrate on the ”what” rather
than the ”how” and it is more flexible as you specify only the boundaries of the
composition rather than its precise execution (reducing the over-specification as-
sociated with the imperative method). Then, the monitoring of the composition
is largely facilitated as the same constraints can be used for both the definition,
the instantiation, and the execution of the composition.

3 Motivating example

Let us consider a sample scenario when the emergency landing of the plane car-
rying important government officials has resulted in serious injuries to the pas-
sengers. An emergency center has been set up in the remote region for handling
patients. In a typical SOA based setup, the emergency center works by contact-
ing the Web services provided by different systems. Depending on the condition
of each patient the emergency center may either opt for nearby initial checkup
center or for the detailed checkup center, for providing patient emergency treat-
ment and to examine the nature of injuries to the patient. The emergency center
may also decide to transfer the patient to some nearby hospital (not known in
advance), this choice will be made using the Web services provided by different
hospitals and will also be based on certain constraints such as the hospitaliza-
tion and surgery facilities availability and some non-functional properties such
as reliability, temporal requirements and others. The chosen hospital Web ser-
vice can then be used to schedule operation theatre, allocate surgery team and
to provide critical data to the hospital.

The composition process may also decide to discover and communicate with
the ambulance service (or SAMU1 service for serious injuries) to transfer the
patient to the selected hospital and again, as the Web service is not known in
advance, some constraints may be specified to discover the service.

Due to high-profile passengers, contacting Police department for assistance
may be needed. Further the access to the patient information file from the Web
service provided by the social security system may also be needed. Finally, the
emergency center may also discover and contact some blood bank service to
arrange additional blood supply for the patient (if patient blood type is rare).

4 Proposed framework

Our proposal aims to provide a declarative framework for addressing the Web
services composition and monitoring problem, such as the one presented in the

1 SAMU (Service d’Aide Médicale d’Urgence) is the French hospital based emergency
medical service.



motivating example. In this section we will briefly discuss the main concepts re-
lated to our approach and will detail them in the sections to follow. Our proposed
framework has two main stages, abstract composition and the concrete compo-

sition. Each stage has a set of constraints targeted to handle the organization
(composition modeling) and the situation measurement dimension (monitoring).
This gives our framework the flexibility to use the same set of constraints for
bridging the gap between organization and situation measurement (see figure 1).

Abstract 
composition

Concrete 
composition

Web services
Composition

Web services
Monitoring

local/choreography/
NF constraints

Execution
constraints

Instantiation/
Execution

Monitoring

Fig. 1. Proposed framework components

The composition process starts when the user specifies the abstract composi-

tion, using a user friendly interface, allowing her/him to drag and drop compo-
nents and provide constraints. Various related concepts include:

– Web services - The user can specify the concrete Web services instances
known in advance, to be used within the composition process.

– Nodes - If the Web service instance is not known in advance, the user can
specify the Web service node which has a unique type such as Hospital.

– Constraints - Constraints specify the boundaries for the solution to the com-
position process and different type of constraints can be added to the abstract

composition process for handling modeling and monitoring dimensions. The
constraints related to composition modeling include the local,choreography
and non-functional constraints while the constraints for handling composi-
tion monitoring include execution constraints (see figure 1).

The abstract composition specified by the user is used to instantiate the con-

crete composition phase. As similar to the abstract composition, the concrete

composition process also has different stages for handling composition modeling
and monitoring. Local and choreography constraints are used for nodes instan-
tiation and process execution while the execution constraints are handled at
run-time monitoring phase of the concrete composition.

In order to model the abstract composition, our approach relies on the Event
Calculus (EC) [3, 7]. The choice of EC is motivated by several reasons. First, EC
integrates an explicit time structure (this is not the case in the situation calculus)



independent of any sequence of events (possibly concurrent). Then, given the
abstract composition specified in the EC, an event calculus reasoner can be
used to instantiate the concrete composition. Further, EC is very interesting as
the same logical representation can be used for verification at both design time
(static analysis) and runtime (dynamic analysis and monitoring).

The EC is a first-order logic that comprised the following elements: A is the
set of events (or actions), F is the set of fluents (fluents are reified2), T is the
set of time points, and X is a set of objects related to the particular context.
In EC, events are the core concept that triggers changes to the world. A fluent
is anything whose value is subject to change over time. EC uses predicates to
specify actions and their effects. Basic event calculus predicates are:

– Initiates(e, f, t) - fluent f holds after timepoint t if event e happens at t.
– Terminates(e, f, t) - fluent f does not hold after timepoint t if event e hap-

pens at t.
– Happens(e, t) is true iff event e happens at timepoint t.
– HoldsAt(f, t) is true iff fluent f holds at timepoint t.
– Initially(f) - fluent f holds from time 0.
– Clipped(t1, f, t2) - fluent f was terminated during time interval [t1, t2].
– Declipped(t1, f, t2) - fluent f was initiated during time interval [t1, t2].

Further, some event calculus axioms are available that relate the various
predicates together. Using EC, we are able to represent both the organization,
i.e. the abstract composition of services, and the situation, i.e. the verification
that everything goes as planned at execution time.

5 Abstract composition

5.1 Constraints

The constraints added to the abstract composition serve as the boundaries for
the acceptable solution to the composition problem. These constraints can be
divided into following categories:

– Local constraints are the constraints added to the Web service nodes in
the composition process. These constraints specify the properties that should
be respected while binding the Web service nodes to concrete Web service
instances and as our approach aims to choose the best matched solution
for the node instantiation, the local constraints specify one specific path
(solution) to choose from all available paths (solutions) for the Web services
composition process. Local constraints can be in the form of non-functional
requirements such as security, reliability, quality requirements. They can also
be in the form of some domain specific functional properties (hospitalization,
surgery facilities availability for the motivating example). Formally, local

2 Fluents are first-class objects which can be quantified over and can appear as the
arguments to predicates.



constraints are translated as predicates in EC. For instance, service s1 is
reliable would be written with the following formula: reliable(s1, value)
where value is true.

– Choreography constraints specify the constraints regarding the control
flow of the composition process and express the order and execution sequence
of the participating activities. Some examples of choreography constraints in-
clude before, after, if-then-else, choice and others. Choreography constraints
are also guided by the dependency between the participating entities, spec-
ifying that a service s1 has a dependency on service s2 will require s1 to be
executed before the service s2. Formally, following EC formula specifies that
service s1 must be executed before service s2:
Initially(forbidden(s2, f)) ∧ Terminates(s1, forbidden(s2, f), ).

– Non-functional constraints specify the constraints independent of the
functional aspect of the web service composition. It can be for instance se-
curity requirements. Formally, if we want to model a specific security rule
stating for instance that once a service s1 has been executed, the service s2

cannot be executed for the next 20 minutes, we write:
Initiates(s1, forbidden(s2, f), t1)∧Declipped(t1, forbidden(s2, f), t2)∧(t1+
20 ≤ t2).

– Execution constraints specify the constraints to be validated at run-time.
These constraints take the form of monitors, which have a associated mon-
itoring event/condition and actions to perform if the condition to be moni-
tored is encountered. We will take a detailed look on monitors in section-7

5.2 Example

Let us now review the motivating example and discuss how the abstract com-

position can be specified, introducing the associated constraints. The abstract

composition is specified using abstract-refine approach, the base abstract com-

position for the motivating example can be specified as:
initialCheckupWS, detailedCheckupWS, Hospital(?h), Ambulance(?a), SAMU(?s), regionalPo-

liceWS, someSocialSecurityWS, BloodBank(?b)

The presentation syntax above is used to describe the participating Web
services in the composition process, the question mark (?) operator marks the
variables, i.e. the Web service nodes that have not yet instantiated. The syntax
also specifies the type of participating nodes.

The base abstract composition has no constraints added to it, i.e. all that
is specified is the invocation (or instantiation and invocation for Web service
nodes). To mark the boundaries of the abstract composition, we start by adding
the different type of constraints to the abstract composition. The initialCheckup

is a concrete (already known) web service and thus has no local constraints. For
the choreography constraints, we consider the service to be invoked before the
hospital and detailedCheckup service and that if the initialCheckup service is
executed then the detailedCheckup service is also executed. Further, the service
has data dependency on the patient information from the socialSecurity Web
service. As part of execution constraints, we consider that the data validity from



the service is for 1 hour and the response time of the service should be less that
5 ms. Finally, for the cardinality constraints, which are part of the choreography
constraints, we consider that the service can be executed zero or one times dur-
ing the process execution. This marks the service to be optional and thus can
be skipped for some instance (for all other participating services cardinality is
exactly one). Below we present the event calculus formalization for the associ-
ated constraints to the initialCheckupService (ICS), we will detail the execution
constraints later in section-7:
Choreography constraints:

before hospital - Initially(forbidden(Hospital(h), true))∧Terminates(ICSInvoked,

forbidden(Hospital(h), true), )

If ICS then detailedCheckup - Initiates(ICSInvoked, HoldsAt(

invoke(detailedChekup, true), t2), t1) ∧ t1 < t2

data dependency on socialSecurityWS - Initially(forbidden(ICS, true))∧

Terminates(socialSecurityWSInvoked, forbidden(ICS, true), )

Ambulance

SAMU

regionalPolice

Ambulance

SAMU

regionalPolice

Hospital

Ambulance SAMU

regionalPolice

a) initialCheckup c) Ambulance/SAMU 

Hospital

socialSecurity

detailedCheckup

b) detailedCheckup 

...

initialCheckup

regionalPolice

socialSecurity

Hospital

Ambulance SAMU

d) possible 

execution path

initialCheckup

detailedCheckup

regionalPolice

socialSecurity

Ambulance SAMU

e) another possible 

execution path

Hospital

BloodBank

initialCheckup

Hospital

socialSecurity

detailedCheckup

BloodBank BloodBank
BloodBank

BloodBank

Fig. 2. Abstract composition for the motivating example

The choreography constraints associated with the initialCheckupWS also
guide the partial control structure of the composition process (see figure 2-a),
specifying constraints such as before hospital does not mark that the hospital

service will immediately follow but specifies that there may be zero or many
steps (services) between them. We can then have the similar constraints for the
detailedCheckup service, excluding the constraint the if detailedCheckup is exe-
cuted then the initialCheckup in also executed. This refines the partial control
flow induced by the initialCheckup service (see figure 2-b). Next, for the hospital
node we have some local constraints such as reliable, secure Web service and that
the selected hospital must provide hospitalization and surgery facilities. Further



the hospital service has data dependency on initialCheckup and detailedCheckup
Web services, below we present constraints modeling using EC, we will leave the
discussion of execution constraint (in case of service failure re-instantiate hospi-
tal node) until section-7 :
Local constraints: reliable(Hospital(h), true)∧providesSurgery(Hospital(h), true)

Choreography constraints: Similar to EC model for initialCheckup service

For the ambulance and SAMU nodes, we have some local constraints and
the choreography constraint that they cannot coexist. Further, they have data
dependency constraint on the Hospital node and this refines the partial control
flow by stating that in any solution to the composition process either of two
services should be chosen after the hospital service invocation (see figure 2-c).
Local constraints:

reliable(Ambulance(a), true) ∧ providesAirServices(Ambulance(a), true)

Choreography constraints:

Initiates(ambulanceServiceInvoked, forbidden(SAMUService, true), )∧

Initiates(SAMUServiceInvoked, forbidden(ambulanceService, true), )

Then, for the BloodBank node, we can have some local constraints for service
discovery and it has data dependency on the socialSecurity service. Finally,
regionalPolice service is unconstrained and this gives the flexibility to invoke
the service anywhere in the composition process. These constraints mark the
boundary of the possible solution to the composition process but intentionally do
not over-constraint the composition process providing the flexibility for process
execution (see figure 2-d and 2-e for possible execution paths).

6 Concrete composition

The event calculus model for the abstract composition specified by the user can
then be used to instantiate the concrete composition using the event calculus
reasoner, below we highlight the various related concepts. The concrete compo-

sition process is divided into three phases; the instantiation phase handles the
instantiation of Web service nodes to concrete Web service instances. The exe-

cution phase follows, which executes the instantiated Web services composition
process, finally the monitoring phase handles the composition process monitor-
ing during execution. In this section we will detail the instantiation phase and
in the next section will discuss the monitoring phase of the composition process.

Instantiation The instantiation process is responsible for binding the Web
service nodes to concrete Web service instances. The process starts by using
the local constraints added to the abstract composition, that highlight the user
preferences for the Web service discovery. These constraints are used to query the
Web services repository for identifying the services satisfying these constraints
however, in case of a loosely constrained node, the result set can be very large.
Our proposal thus aims to choose the best matched Web service either selected



manually by the user or based on some user-specified criteria such as the quality
rating for the Web service, by assuming that some trusted third-party has quality
ratings assigned to services. For the instantiation process, we may also have to
consider the choreography constraints associated to a Web service node in order
to identify if the service has data dependency on the some already instantiated
node. This will further constrain the Web service node to consider only the
instantiations that respect the dependency between nodes. For the motivating
example, the hospital node has data dependency on the initialCheckup service
and thus may require to consider only the hospital Web services which can handle
compatible data, this leads to a set of service composability rules which space
limitations restrict us to detail.

If the instantiation result set for a node is empty then we have following
possibilities. If some constraint is unsatisfied, user can be given option if she/he
wants to relax the constraint. For example the user can decide to relax the
reliability constraint in an attempt to discover new instances. Further, if the
dependency between nodes is unsatisfied, we need to backtrack to the results of
previous node to select some other instantiation solution and then proceed to
finding solution for the current node. The process continues until all backtrack
solutions have been explored. Finally when none of above two situations hold,
the composition process fails with notifying the user of the intermediate results.

Then, an important aspect of our proposal concerns the ability for the in-
stantiation to be modified at execution. Let us consider for instance that a node
has been statically instantiated. At runtime, if the service fails, the node can be
re-instantiated with a new service in order to continue the execution.

Backtracking The backtracking process involves finding an alternative to some
previously chosen node instantiation solution. Backtracking is needed when the
dependency between nodes is unsatisfied resulting in empty result set.

For the motivating example, the Ambulance node has data dependency on
the Hospital node and lets consider the Hospital node has been instantiated to
someHospitalService providing data in JSON format, then instantiating the Am-
bulance node will require us to consider only the Ambulance services requiring
data in JSON format. Further, consider that there is no service available for the
Ambulance node which can handle JSON data (however all can handle XML),
this will require us to backtrack to the Hospital node to choose some other
service, say someOtherHospitalService which may be providing XML data.

Propagation Once the backtracking process execution terminates, resulting in
a newly chosen solution (instance), the composition solution must be recomputed
and may require the propagation of newly chosen solution. This would likely be
the case when a (partial) solution to the composition process has already been
determined and backtracking to some higher node (in hierarchal order) may
result in propagating the new solution. Further, propagation may also be needed
when the user fine tunes the solution by manually selecting some other Web
service after the instantiation process. In reference to the motivating example



scenario discussed for the backtracking process, the reinstantiation result i.e.
someOtherHospitalService should be propagated to the Ambulance node.

7 Composition monitoring

The composition monitoring phase works by using the execution constraints,
called monitors, attached to the abstract composition. Below we first briefly
discuss the Event Processing Network (EPN) framework on which we will base
our proposed monitoring framework.

7.1 Event Processing Network

Event processing network[12] is defined to be a pattern promoting the produc-
tion, detection, consumption and reaction to events. An EPN model consists
of four components, event producers (EP), event processing agents (EPA), con-
sumers (C) and connection channels, called event channels (EC), for communi-
cation between other components. The EPA has following three stages, Pattern
detection - responsible for selecting events matching a particular pattern, Pro-
cessing - for applying processing functions to events detected and thus resulting
in derived events and Emission - for emission of derived events.

Regarding proposed framework, the events generated by the composition pro-
cess include the process startup, termination, and messages exchanged between
the composition process and the services. Each event has associated header in-
formation which indicates the event meta-data including its source, type (such
as inputMessage, outputMessage), time stamp and other similar information. In
context of our proposed model, the composition process and participating Web
services can be termed as the event producers. The produced events will then be
processed by the EPA, which in our case is the event listener attached to the
composition process.

7.2 Monitors

Monitors specify the execution constraints added to the abstract composition
and each monitor has a set of activation conditions and associated actions.

Activation condition Each monitor has a set of activation conditions and the
associated actions. The monitor activation conditions are based on the pattern
detection stage of the EPN, below we discuss different activation stages.

– Context specifies the context of events that will be used for evaluating the
event conditions. Temporal context can be specified to handle the conditions
where monitoring is based on invocation history, as an example consider that
we need to monitor the average response time for a Web service in last 24
hours. Spatial context can be specified, for example to monitor events orig-
inating from Web service in certain geographical region. Finally semantic



based context can be used to handle cases when generated events have rele-
vance through mutual object or entity, as an example consider the case when
we are willing to monitor the response time of all the Web services related
to (or have the same type of) a particular Web service. The context can also
be specified as of value null, requiring all the events to be processed.

– Policies can include decisions to either use first, last or each of event (within
specified context) in stream for pattern detection. They can also apply fur-
ther constraints to only include the events satisfying a predicate on their
attributes or by specifying expiry time for events.

As an example consider that only output messages from some service s,
should be used for monitoring; we can thus specify the policy to consider all
the events having type as message and source as service s in their meta-data.

– eventConditions as similar to the patterns in an EPN model, the events
conditions specify the conditions to be checked for events conforming policies
and that are within specified context. Event conditions are specified using
event calculus and some common types of event conditions include verifying
data values within messages being sent and received by the composition
process, overall time taken by the composition process and others.

– Directives specify the directives for reporting monitoring violations to the
actions stage. The monitoring process may decide to report the monitoring
violations as they are observed by specifying the directive as immediately,
this would likely be the case of a service failure. However, the monitoring
process can also decide to delay the reporting by specifying directive as delay

- timeValue to delay the reporting in an attempt to give the service some
time to recover from the violation, this would likely be the case of exceeding
response time for the Service.

Actions Once the eventCondition specified for the monitor is satisfied, asso-
ciated actions specify the actions to be taken. Some common actions include
terminate/ignore/reinstantiate and others. The re-instantiation function has an
important application to the Web services monitoring process. In case of a ser-
vice failure or a tardy service having a significant delay in the response time, to
a service chosen as the result of the instantiation process, the monitoring process
can add directives to re-instantiate the Web service node. The current service is
added to the set of already used services for the node and a newly chosen service
can then be used. This leads to the run-time composition of the Web services
and a detailed discussion is beyond the scope of this paper.

The re-instantiation and then propagation to dependent nodes can be ex-
pensive, if the services are already in execution but it prevents the complete
failure. Another important aspect is the handling of (partial) execution results
of the service; if the service hasn’t yet been invoked and no data is available, the
reinstantiation is safe. If there are some intermediate result, they can either be
discarded or passed to the newly instantiated service.



7.3 Example

Let us now review the motivating example and see how composition monitoring
works using proposed framework. For the initialCheckup service we can specify
some execution constraints that the data validity period for the service response
is one hour and that the response time for the service should be less than 2
seconds. For the response time, the monitor below can be attached to the com-
position process as part of execution constraints of the service.

monitor: initialCheckup_responseTime
activation:

context: none - every event should be taken into account
policies: last request/response message, service = initialCheckup
eventCondition:
HoldsAt(requestSent(ICService, true), t) ∧

HoldsAt(responseReceived(ICService, true), t′) ∧ t + 2 > t′

directives: immediate
action: send response time alert message

The monitor above, added to abstract composition, can then be used by
the event listener attached to the composition process for runtime handling.
The monitor requires event listener to listen for the messages sent/received by
the composition process that are within specified context (specified as none and
thus listens for every event) and those conforming policies (last request/response
messages from the initialCheckup service). Once the messages within specified
context and conforming to policies is detected by the event listener, event con-
ditions are checked (time difference between request/response messages greater
than 2 seconds) and in case of conditions become true, directives (immediately)
are observed to identify when to report this violation to actions stage. The ac-
tions stage can then take the appropriate actions (send notification message).
Then for monitoring the data validation, the monitor below can be specified:

monitor: initialCheckup_dataValidation type: Message
activation:

context: none
policies: last response message, service = initialCheckup
eventCondition:
Declipped(t, available(checkupWSData, true), t′) ∧ (t + 60 > t′)
directives: immediate

action: send data expiry alert message

Every service that is using the data of initialCheckup can then have a monitor
to listen for the data expiry message of initialCheckup service and to take the
corresponding actions. We can then also have a monitor to handle the Hospital
node re-instantiation in case of service failure, omitted due to space limitations.

8 Conclusion

In this paper, we present a constraint based declarative approach for Web ser-
vices composition and monitoring problem. Our approach allows user to build
the abstract composition by identifying the participating entities and by provid-
ing a set of constraints that mark the boundary of the solution. Different types of



constraints have been proposed to handle the composition modeling and moni-
toring; local, choreography and non-functional constraints guide the composition
design, while the execution constraints, called monitors and are based on Event
Processing Architecture, are used for process monitoring during execution.

The abstract composition can then be used for the concrete composition,
which involves instantiating the Web service nodes to the concrete Web service
instances respecting local constraints associated with the nodes. The instanti-
ation process then executes the composition and attaches the event listener to
the composition process for handling run-time monitoring based on execution
constraints. We have also presented a sample Crisis Management scenario, that
highlights our approach.

References

1. F. Barbon, P. Traverso, M. Pistore, and M. Trainotti. Run-time monitoring of
instances and classes of web service compositions. In ICWS, pages 63–71, 2006.

2. L. Baresi, S. Guinea, R. Kazhamiakin, and M. Pistore. An integrated approach for
the run-time monitoring of bpel orchestrations. In ServiceWave, pages 1–12, 2008.

3. R. A. Kowalski and M. J. Sergot. A logic-based calculus of events. New Generation

Comput., 4(1):67–95, 1986.
4. K. Mahbub and G. Spanoudakis. Run-time monitoring of requirements for systems

composed of web-services: Initial implementation and evaluation experience. In
ICWS, pages 257–265, 2005.

5. S. A. McIlraith and T. C. Son. Adapting golog for composition of semantic web
services. In KR, pages 482–496, 2002.

6. B. Medjahed, A. Bouguettaya, and A. K. Elmagarmid. Composing web services
on the semantic web. VLDB J., 12(4), 2003.

7. M. Montali, F. Chesani, P. Mello, and P. Torroni. Verification of choreographies
during execution using the reactive event calculus. In WS-FM2008, 2008.

8. S. Narayanan and S. A. McIlraith. Simulation, verification and automated com-
position of web services. In WWW, pages 77–88, 2002.

9. M. Pesic and W. M. P. van der Aalst. A declarative approach for flexible business
processes management. In Business Process Management Workshops, Austria,
2006.

10. J. Rao and X. Su. A survey of automated web service composition methods. In
SWSWPC, pages 43–54, 2004.

11. H. Schuster, D. Georgakopoulos, A. Cichocki, and D. Baker. Modeling and com-
posing service-based and reference process-based multi-enterprise processes. In
CAiSE, 2000.

12. G. Sharon and O. Etzion. Event-processing network model and implementation.
In IBM Systems Journal, 2008.

13. E. Sirin, J. Hendler, and B. Parsia. Semi-automatic composition of web services
using semantic descriptions. In In Web Services: Modeling, Architecture and In-

frastructure workshop in ICEIS 2003, pages 17–24, 2002.
14. W. M. P. van der Aalst and M. Pesic. Decserflow: Towards a truly declarative

service flow language. In The Role of Business Processes in Service Oriented Ar-

chitectures, 2006.
15. R. J. Waldinger. Web agents cooperating deductively. In FAABS, 2000.


