1,487 research outputs found

    R06. Identification of the Cellular Pathways Targeted by Two Antifungal Natural Products Using RNA-Seq Analysis

    Get PDF
    Corresponding author (NCNPR): Ameeta Agarwal, [email protected]://egrove.olemiss.edu/pharm_annual_posters/1005/thumbnail.jp

    Single-nucleotide polymorphism-gene intermixed networking reveals co-linkers connected to multiple gene expression phenotypes

    Get PDF
    Gene expression profiles and single-nucleotide polymorphism (SNP) profiles are modern data for genetic analysis. It is possible to use the two types of information to analyze the relationships among genes by some genetical genomics approaches. In this study, gene expression profiles were used as expression traits. And relationships among the genes, which were co-linked to a common SNP(s), were identified by integrating the two types of information. Further research on the co-expressions among the co-linked genes was carried out after the gene-SNP relationships were established using the Haseman-Elston sib-pair regression. The results showed that the co-expressions among the co-linked genes were significantly higher if the number of connections between the genes and a SNP(s) was more than six. Then, the genes were interconnected via one or more SNP co-linkers to construct a gene-SNP intermixed network. The genes sharing more SNPs tended to have a stronger correlation. Finally, a gene-gene network was constructed with their intensities of relationships (the number of SNP co-linkers shared) as the weights for the edges

    The Goldbeter-Koshland switch in the first-order region and its response to dynamic disorder

    Get PDF
    In their classical work (Proc. Natl. Acad. Sci. USA, 1981, 78:6840-6844), Goldbeter and Koshland mathematically analyzed a reversible covalent modification system which is highly sensitive to the concentration of effectors. Its signal-response curve appears sigmoidal, constituting a biochemical switch. However, the switch behavior only emerges in the "zero-order region", i.e. when the signal molecule concentration is much lower than that of the substrate it modifies. In this work we showed that the switching behavior can also occur under comparable concentrations of signals and substrates, provided that the signal molecules catalyze the modification reaction in cooperation. We also studied the effect of dynamic disorders on the proposed biochemical switch, in which the enzymatic reaction rates, instead of constant, appear as stochastic functions of time. We showed that the system is robust to dynamic disorder at bulk concentration. But if the dynamic disorder is quasi-static, large fluctuations of the switch response behavior may be observed at low concentrations. Such fluctuation is relevant to many biological functions. It can be reduced by either increasing the conformation interconversion rate of the protein, or correlating the enzymatic reaction rates in the network.Comment: 23 pages, 4 figures, accepted by PLOS ON

    Accidental damaged diamond-like carbon coating by prefabricated scratches: Experimental exploration on anticorrosion and tribological performances

    Get PDF
    Accidental damage on the diamond-like carbon (DLC) coating can have a great influence on the anticorrosion and tribological performances. In this study, DLC coating was deposited by a DC unbalanced magnetron sputtering technique. The scratch tests with different damage loads of 2, 10, 20, 30, 40 and 50 N were used to imitate the different types of accidental damage. The influence of different types of surface damage states on anticorrosion performance and scratch damage structures on tribological performance were studied and compared with those of the coating without damage. Cracking or spalling of the coating promotes the corrosion failure of the coating system and pitting corrosion of the stainless steel substrate, resulting in the deterioration of the corrosion protection effectiveness. With the damage increases from fine crack to complete failure, the corrosion resistance decrease obviously and the corrosion rate increases from 1.796 × 10−9 to 2.880 × 10−8 (A/cm2). The coating with an appropriate scratch structure as the sample S2 (scratch width of 0.012 mm and the ratio of the scratch width to the contact width is 0.033) can effectively avoid the softening of the coating surface caused by graphitization and collect the wear debris particles, resulting in the excellent tribological behaviors with the lowest wear rate of 1.848 × 10−16 m3/(N·m)

    Involvement of Glutamate Transporter-1 in Neuroprotection against Global Brain Ischemia-Reperfusion Injury Induced by Postconditioning in Rats

    Get PDF
    Ischemic postconditioning refers to several transient reperfusion and ischemia cycles after an ischemic event and before a long duration of reperfusion. The procedure produces neuroprotective effects. The mechanisms underlying these neuroprotective effects are poorly understood. In this study, we found that most neurons in the CA1 region died after 10 minutes of ischemia and is followed by 72 hours of reperfusion. However, brain ischemic postconditioning (six cycles of 10 s/10 s reperfusion/re-occlusion) significantly reduced neuronal death. Significant up-regulation of Glutamate transporter-1 was found after 3, 6, 24, 72 hours of reperfusion. The present study showed that ischemic postconditioning decreases cell death and that upregulation of GLT-1 expression may play an important role on this effect

    Arabidopsis mRNA polyadenylation machinery: comprehensive analysis of protein-protein interactions and gene expression profiling

    Get PDF
    BACKGROUND: The polyadenylation of mRNA is one of the critical processing steps during expression of almost all eukaryotic genes. It is tightly integrated with transcription, particularly its termination, as well as other RNA processing events, i.e. capping and splicing. The poly(A) tail protects the mRNA from unregulated degradation, and it is required for nuclear export and translation initiation. In recent years, it has been demonstrated that the polyadenylation process is also involved in the regulation of gene expression. The polyadenylation process requires two components, the cis-elements on the mRNA and a group of protein factors that recognize the cis-elements and produce the poly(A) tail. Here we report a comprehensive pairwise protein-protein interaction mapping and gene expression profiling of the mRNA polyadenylation protein machinery in Arabidopsis. RESULTS: By protein sequence homology search using human and yeast polyadenylation factors, we identified 28 proteins that may be components of Arabidopsis polyadenylation machinery. To elucidate the protein network and their functions, we first tested their protein-protein interaction profiles. Out of 320 pair-wise protein-protein interaction assays done using the yeast two-hybrid system, 56 (approximately 17%) showed positive interactions. 15 of these interactions were further tested, and all were confirmed by co-immunoprecipitation and/or in vitro co-purification. These interactions organize into three distinct hubs involving the Arabidopsis polyadenylation factors. These hubs are centered around AtCPSF100, AtCLPS, and AtFIPS. The first two are similar to complexes seen in mammals, while the third one stands out as unique to plants. When comparing the gene expression profiles extracted from publicly available microarray datasets, some of the polyadenylation related genes showed tissue-specific expression, suggestive of potential different polyadenylation complex configurations. CONCLUSION: An extensive protein network was revealed for plant polyadenylation machinery, in which all predicted proteins were found to be connecting to the complex. The gene expression profiles are indicative that specialized sub-complexes may be formed to carry out targeted processing of mRNA in different developmental stages and tissue types. These results offer a roadmap for further functional characterizations of the protein factors, and for building models when testing the genetic contributions of these genes in plant growth and development
    • …
    corecore