52 research outputs found

    Multi-Perspective Relevance Matching with Hierarchical ConvNets for Social Media Search

    Full text link
    Despite substantial interest in applications of neural networks to information retrieval, neural ranking models have only been applied to standard ad hoc retrieval tasks over web pages and newswire documents. This paper proposes MP-HCNN (Multi-Perspective Hierarchical Convolutional Neural Network) a novel neural ranking model specifically designed for ranking short social media posts. We identify document length, informal language, and heterogeneous relevance signals as features that distinguish documents in our domain, and present a model specifically designed with these characteristics in mind. Our model uses hierarchical convolutional layers to learn latent semantic soft-match relevance signals at the character, word, and phrase levels. A pooling-based similarity measurement layer integrates evidence from multiple types of matches between the query, the social media post, as well as URLs contained in the post. Extensive experiments using Twitter data from the TREC Microblog Tracks 2011--2014 show that our model significantly outperforms prior feature-based as well and existing neural ranking models. To our best knowledge, this paper presents the first substantial work tackling search over social media posts using neural ranking models.Comment: AAAI 2019, 10 page

    Temporal Context Modeling for Text Streams

    Get PDF
    There is increasing recognition that time plays an essential role in many information seeking tasks. This dissertation explores temporal models on evolving streams of text and the role that such models play in improving information access. I consider two cases: a stream of social media posts by many users for tweet search and a stream of queries by an individual user for voice search. My work explores the relationship between temporal models and context models: for tweet search, the evolution of an event serves as the context of clustering relevant tweets; for voice search, the user's history of queries provides the context for helping understand her true information need. First, I tackle the tweet search problem by modeling the temporal contexts of the underlying collection. The intuition is that an information need in Twitter usually correlates with a breaking news event, thus tweets posted during that event are more likely to be relevant. I explore techniques to model two different types of temporal signals: pseudo trend and query trend. The pseudo trend is estimated through the distribution of timestamps from an initial list of retrieved documents given a query, which I model through continuous hidden Markov approach as well as neural network-based methods for relevance ranking and sequence modeling. As an alternative, the query trend, is directly estimated from the temporal statistics of query terms, obviating the need for an initial retrieval. I propose two different approaches to exploit query trends: a linear feature-based ranking model and a regression-based model that recover the distribution of relevant documents directly from query trends. Extensive experiments on standard Twitter collections demonstrate the superior effectivenesses of my proposed techniques. Second, I introduce the novel problem of voice search on an entertainment platform, where users interact with a voice-enabled remote controller through voice requests to search for TV programs. Such queries range from specific program navigation (i.e., watch a movie) to requests with vague intents and even queries that have nothing to do with watching TV. I present successively richer neural network architectures to tackle this challenge based on two key insights: The first is that session context can be exploited to disambiguate queries and recover from ASR errors, which I operationalize with hierarchical recurrent neural networks. The second insight is that query understanding requires evidence integration across multiple related tasks, which I identify as program prediction, intent classification, and query tagging. I present a novel multi-task neural architecture that jointly learns to accomplish all three tasks. The first model, already deployed in production, serves millions of queries daily with an improved customer experience. The multi-task learning model is evaluated on carefully-controlled laboratory experiments, which demonstrates further gains in effectiveness and increased system capabilities. This work now serves as the core technology in Comcast Xfinity X1 entertainment platform, which won an Emmy award in 2017 for the technical contribution in advancing television technologies. This dissertation presents families of techniques for modeling temporal information as contexts to assist applications with streaming inputs, such as tweet search and voice search. My models not only establish the state-of-the-art effectivenesses on many related tasks, but also reveal insights of how various temporal patterns could impact real information-seeking processes

    Simple and Effective Curriculum Pointer-Generator Networks for Reading Comprehension over Long Narratives

    Full text link
    This paper tackles the problem of reading comprehension over long narratives where documents easily span over thousands of tokens. We propose a curriculum learning (CL) based Pointer-Generator framework for reading/sampling over large documents, enabling diverse training of the neural model based on the notion of alternating contextual difficulty. This can be interpreted as a form of domain randomization and/or generative pretraining during training. To this end, the usage of the Pointer-Generator softens the requirement of having the answer within the context, enabling us to construct diverse training samples for learning. Additionally, we propose a new Introspective Alignment Layer (IAL), which reasons over decomposed alignments using block-based self-attention. We evaluate our proposed method on the NarrativeQA reading comprehension benchmark, achieving state-of-the-art performance, improving existing baselines by 51%51\% relative improvement on BLEU-4 and 17%17\% relative improvement on Rouge-L. Extensive ablations confirm the effectiveness of our proposed IAL and CL components.Comment: Accepted to ACL 201

    Lightweight and Efficient Neural Natural Language Processing with Quaternion Networks

    Full text link
    Many state-of-the-art neural models for NLP are heavily parameterized and thus memory inefficient. This paper proposes a series of lightweight and memory efficient neural architectures for a potpourri of natural language processing (NLP) tasks. To this end, our models exploit computation using Quaternion algebra and hypercomplex spaces, enabling not only expressive inter-component interactions but also significantly (75%75\%) reduced parameter size due to lesser degrees of freedom in the Hamilton product. We propose Quaternion variants of models, giving rise to new architectures such as the Quaternion attention Model and Quaternion Transformer. Extensive experiments on a battery of NLP tasks demonstrates the utility of proposed Quaternion-inspired models, enabling up to 75%75\% reduction in parameter size without significant loss in performance.Comment: ACL 201

    Prediction of overall survival for patients with metastatic castration-resistant prostate cancer : development of a prognostic model through a crowdsourced challenge with open clinical trial data

    Get PDF
    Background Improvements to prognostic models in metastatic castration-resistant prostate cancer have the potential to augment clinical trial design and guide treatment strategies. In partnership with Project Data Sphere, a not-for-profit initiative allowing data from cancer clinical trials to be shared broadly with researchers, we designed an open-data, crowdsourced, DREAM (Dialogue for Reverse Engineering Assessments and Methods) challenge to not only identify a better prognostic model for prediction of survival in patients with metastatic castration-resistant prostate cancer but also engage a community of international data scientists to study this disease. Methods Data from the comparator arms of four phase 3 clinical trials in first-line metastatic castration-resistant prostate cancer were obtained from Project Data Sphere, comprising 476 patients treated with docetaxel and prednisone from the ASCENT2 trial, 526 patients treated with docetaxel, prednisone, and placebo in the MAINSAIL trial, 598 patients treated with docetaxel, prednisone or prednisolone, and placebo in the VENICE trial, and 470 patients treated with docetaxel and placebo in the ENTHUSE 33 trial. Datasets consisting of more than 150 clinical variables were curated centrally, including demographics, laboratory values, medical history, lesion sites, and previous treatments. Data from ASCENT2, MAINSAIL, and VENICE were released publicly to be used as training data to predict the outcome of interest-namely, overall survival. Clinical data were also released for ENTHUSE 33, but data for outcome variables (overall survival and event status) were hidden from the challenge participants so that ENTHUSE 33 could be used for independent validation. Methods were evaluated using the integrated time-dependent area under the curve (iAUC). The reference model, based on eight clinical variables and a penalised Cox proportional-hazards model, was used to compare method performance. Further validation was done using data from a fifth trial-ENTHUSE M1-in which 266 patients with metastatic castration-resistant prostate cancer were treated with placebo alone. Findings 50 independent methods were developed to predict overall survival and were evaluated through the DREAM challenge. The top performer was based on an ensemble of penalised Cox regression models (ePCR), which uniquely identified predictive interaction effects with immune biomarkers and markers of hepatic and renal function. Overall, ePCR outperformed all other methods (iAUC 0.791; Bayes factor >5) and surpassed the reference model (iAUC 0.743; Bayes factor >20). Both the ePCR model and reference models stratified patients in the ENTHUSE 33 trial into high-risk and low-risk groups with significantly different overall survival (ePCR: hazard ratio 3.32, 95% CI 2.39-4.62, p Interpretation Novel prognostic factors were delineated, and the assessment of 50 methods developed by independent international teams establishes a benchmark for development of methods in the future. The results of this effort show that data-sharing, when combined with a crowdsourced challenge, is a robust and powerful framework to develop new prognostic models in advanced prostate cancer.Peer reviewe
    • …
    corecore