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There is increasing recognition that time plays an essential role in many in-

formation seeking tasks. This dissertation explores temporal models on evolving

streams of text and the role that such models play in improving information access.

I consider two cases: a stream of social media posts by many users for tweet search

and a stream of queries by an individual user for voice search. My work explores

the relationship between temporal models and context models: for tweet search, the

evolution of an event serves as the context of clustering relevant tweets; for voice

search, the user’s history of queries provides the context for helping understand her

true information need.

First, I tackle the tweet search problem by modeling the temporal contexts

of the underlying collection. The intuition is that an information need in Twitter

usually correlates with a breaking news event, thus tweets posted during that event

are more likely to be relevant. I explore techniques to model two different types

of temporal signals: pseudo trend and query trend. The pseudo trend is estimated

through the distribution of timestamps from an initial list of retrieved documents



given a query, which I model through continuous hidden Markov approach as well

as neural network-based methods for relevance ranking and sequence modeling. As

an alternative, the query trend, is directly estimated from the temporal statistics

of query terms, obviating the need for an initial retrieval. I propose two differ-

ent approaches to exploit query trends: a linear feature-based ranking model and

a regression-based model that recover the distribution of relevant documents di-

rectly from query trends. Extensive experiments on standard Twitter collections

demonstrate the superior effectivenesses of my proposed techniques.

Second, I introduce the novel problem of voice search on an entertainment

platform, where users interact with a voice-enabled remote controller through voice

requests to search for TV programs. Such queries range from specific program nav-

igation (i.e., watch a movie) to requests with vague intents and even queries that

have nothing to do with watching TV. I present successively richer neural network

architectures to tackle this challenge based on two key insights: The first is that

session context can be exploited to disambiguate queries and recover from ASR er-

rors, which I operationalize with hierarchical recurrent neural networks. The second

insight is that query understanding requires evidence integration across multiple re-

lated tasks, which I identify as program prediction, intent classification, and query

tagging. I present a novel multi-task neural architecture that jointly learns to ac-

complish all three tasks. The first model, already deployed in production, serves

millions of queries daily with an improved customer experience. The multi-task

learning model is evaluated on carefully-controlled laboratory experiments, which

demonstrates further gains in effectiveness and increased system capabilities. This



work now serves as the core technology in Comcast Xfinity X1 entertainment plat-

form, which won an Emmy award in 2017 for the technical contribution in advancing

television technologies.

This dissertation presents families of techniques for modeling temporal infor-

mation as contexts to assist applications with streaming inputs, such as tweet search

and voice search. My models not only establish the state-of-the-art effectivenesses

on many related tasks, but also reveal insights of how various temporal patterns

could impact real information-seeking processes.
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Chapter 1: Introduction

In the recent decades, modern search engines have achieved great successes

and provided highly-efficient ways for users to find their intended information from

a huge collection of information resources. A prominent example is Google Search,

which processes over 100 billion searches from 1.2 billion users across the world in

each month.1 The core technology behind search engines is information retrieval,

an academic field formally defined by Manning et al. [3]:

“Information retrieval (IR) is finding material (usually documents) of an un-

structured nature (usually text) that satisfies an information need from within large

collections (usually stored on computers).”

The input to an information retrieval (IR) system is a query issued from a user

reflecting her information need, and the output will be a list of information resources

ordered by their degrees of relevance to the query. In this dissertation, the query

is assumed as a short text string either typed through a keyboard or transcribed

from a voice request, and the underlying collection is composed of documents which

are written in natural languages. A fundamental challenge in IR is how to match

relevant documents to queries in an efficient manner. A classical approach is to

1http://goo.gl/ebSvJE

1

http://goo.gl/ebSvJE


represent the query as a bag of words with each word weighted by its frequency,

then calculate the matching score with respect to the document for each individual

word, and finally aggregate all scores as the degree of relevance between the query

and document. Such a procedure has been formulated in a variety of ways, including

the vector space model with TF-IDF weights, probabilistic model like BM25 [4] and

language models like the query likelihood model [5].

Being coupled with inverted lists to accelerate efficiency, traditional approaches

represent reasonable solutions for providing both effective and efficient informa-

tion access. However, their relevance scores are purely computed from exact term

matches, which means they can not handle the vocabulary mismatch issue and cap-

ture semantic-level similarities. In many cases, descriptions of a same event have

different vocabulary usages in queries and documents. For example, given a query

“Obama’s trip to China”, an exact-term match approach is not likely to find the rel-

evant document “U.S. president stays in Beijing for a one-week state visit”. To this

end, methods like query expansion [6], pseudo-relevance feedback [7], latent semantic

indexing [8], or the recent neural network approaches [9–11] based on word2vec [12]

have attracted broad attention to solve the semantic matching problem. Their key

insight is to capture word similarities through co-occurrences – two words appear

frequently between each other are more likely to be relevant, which is ultimately

exploited to overcome the vocabulary mismatch challenge.

In addition to modeling textual similarity from lexical and semantic views,

time is another important dimension in many search tasks. Indeed, the temporal

dynamics and its impact on various components of information retrieval systems,
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such as temporal indexing [13], temporal query analysis [14,15], time-aware retrieval

and ranking [16,17], have received much attention in the last decade, and such study

has been reframed as temporal information retrieval (temporal IR).

The main focus of temporal IR divides into two categories: 1) changes in

collection contents and structures; 2) changes in user behaviors. First, the contents

and structures of the Web constantly change over time, e.g., documents are created,

deleted, or updated continuously. Many researchers and institutions have recognized

the need to build infrastructure to preserve part of the Web [18]. For example, the

well-known Internet Archive project has collected over 456 billion web pages from

1996 to 2015. Dai and Davison et al. [19] also point out the link structures of the

Web evolves. Such evolutions affect not only the basic IR components like crawling

and indexing, also the computation of graph-based authority measures for document

ranking.

Meanwhile, how users search Web content changes over time. On one hand,

search traffic looking for particular events varies over time and might exhibit certain

temporal patterns, like spikes, periodicity, seasonality, and trends. The occurrence

of a breaking news event (i.e., earthquakes, murders, the results of president election)

would attract substantial amount of attention and user searches in a short period of

time, and such popularity would gradually decrease as the news event “dies down”.

Also identifying the periodicity pattern of certain events (i.e., annual April Fools’

day) would be beneficial for predicting when and how users would search for them.

On the other hand, the search process can not be viewed as a static process. Users

interact with the search system in an incremental manner – they will continue to
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rewrite and issue their queries as long as they are not satisfactory with returned

search results yet. Such kinds of interaction behaviors usually happen in seconds

or minutes, which requires a rapid and interactive modeling approach to gradually

refine users’ real intents.

1.1 Modeling Temporal Contexts for Tweet Search

In the literature on temporal IR, there has been much work on modeling the

temporal characteristics of document collections and exploiting temporal features to

improve document ranking. Recently, we have witnessed a resurgence of interest in

temporal ranking models due to the ubiquity of real-time social media streams [15,

16,20–24]. Social media platforms encourage users to comment, share, and broadcast

their opinions about certain breaking events in a real-time manner, which creates a

large dynamic collection with strong temporalities. This dissertation selects Twitter

data as a representative example for study purposes.

1.1.1 Pseudo Trend Modeling

The tweet search scenario is formally defined in the recent Microblog tracks at

the Text Retrieval Conferences (TRECs) [25]: at time t, a user expresses an informa-

tion need in the form of a query q. The system’s task is to return topically-relevant

documents (tweets) posted before the query time. Due to the time-sensitive prop-

erties of queries in Twitter (which usually corresponds to some real-world events),

modeling the temporal patterns of collection content changes will provide additional
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Figure 1.1: Temporal distribution of relevant (green) and highly-relevant (red)
tweets for three queries from the TREC 2011 Microblog track.

relevance signals to the content-based search algorithms.

Efron et al. [16] illustrate this intuition with three example queries from the

TREC 2011 Microblog Track in Figure 1.1. In each timeline, the query time (the

time at which the query was issued) is anchored to the right edge; the x-axis shows

time prior to the query time, in days. Dots show tweets that were retrieved by

participating teams and evaluated by assessors (i.e., the pools): green dots are

relevant, red dots are highly relevant, and gray dots are not relevant. The underlying

blue bars show the distribution of relevant and highly-relevant tweets as a histogram.

As we can see, relevant tweets for query 14 and 30 tend to cluster together in time,

while relevant tweets for query 6 are more evenly distributed. Across all queries

from the TREC test collections, we observe many timelines that exhibit a temporal

clustering pattern (like query 14 and 30).

These visualizations demonstrate the temporal distribution of relevant tweets

are often non-uniform, which suggests any retrieval model that doesn’t take tempo-

rality into consideration is potentially missing out some important relevance infor-

mation. Furthermore, the temporal patterns tend to be query-specific, suggesting

that a one-size-fits-all strategy would not be able satisfy the needs for all queries.
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For example, if we assume a recency prior [26] to select more recent tweets for query

30, it’s unclear whether the same method will work for other queries like query 6 and

14. Modeling these temporal trends can provide us benefits on identifying relevant

documents and improving ranking effectiveness of a IR system.

My initial work, presented in Chapter 3, aims to estimate the distribution

of relevant documents in Figure 1.1 through the distribution of timestamps from

the retrieved documents of an initial query. Since idea shares similarity to the

pseudo-relevance feedback methods that also rely on the results of an initial query

to refine estimates of term distributions in relevant documents, which we call pseudo

trend methods. Inspired by the recent successes of neural networks in many natural

language processing problems [27,28], I first propose an approach for temporal mod-

eling of pseudo trends using recurrent neural networks [29]. Such models have been

successfully applied to many sequence learning tasks in natural language processing

where the modeling units are temporally dependent (e.g., tagging and parsing). I

draw a connection between the temporal clustering of documents, where the rele-

vance of one document may affect its neighbors, to a sequence learning task, and

explore the hypothesis that recurrent neural networks provide a rich, expressive

modeling framework to capture such temporal signals.

To this end, I propose an end-to-end neural framework [29] to incorporate

lexical and temporal evidence. It consists of a lexical modeling component for con-

verting query–document pairs into vector representations denoting their semantic

similarities, and another temporal modeling component for capturing temporal rel-

evance signals. Starting with a few existing neural lexical models [11, 30, 31] that
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achieves competitive performance on tasks like web search or textual similarity mea-

surements, I wondered how they would fare in the context of noisy social media posts

and how the pseudo trend signal could help in these cases.

In addition, I consider another user case of how pseudo trends can help us

identifying more informative terms for query expansion. The idea of query expan-

sion is to reduce the classical vocabulary mismatch issue by augmenting the initial

query with terms that are more likely to appear in relevant documents. To this

end, I propose a continuous hidden Markov model (cHMM) [32] to estimate the

relevance distribution, through which we can identify the bursty state and select

frequent terms in those states for query expansion. These refined query terms es-

tablish a better connection of the reformulated query to relevant documents, since we

know relevant documents are more likely to occur in bursty states (as bursty states

usually correspond to the occurrence of breaking news and events). This intuition

is confirmed by effectiveness gains against traditional query expansion techniques

without temporal information on standard Twitter collections, demonstrating that

my cHMM technique is able to capture the relevance distributions well.

These work have been published in a full ECIR paper [33] for reproduction

study, a ICTIR short paper [32] and a NeuIR paper [29].

1.1.2 Query Trend Modeling

In addition to the above pseudo trend methods, I also explore another family of

techniques in Chapter 4 to estimate the distribution of relevant documents: instead
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Figure 1.2: distribution of relevant documents vs. query trends on topic MB001
“BBC world service stuff cuts”

of relying on the results of an initial query, I attempt to exploit temporal signals

embedded in the distribution of the query terms themselves. I call these query

trends, which are generalizations of collection statistics of query terms (unigrams

and bigrams) in the temporal dimension. In the simplest form, we might keep

track of the number of occurrences of query terms across a moving window over the

document collection. This intuition is illustrated in Figure 1.2 with an example: the

distribution of relevant documents of topic MB001 (“BBC World Service staff cuts”)

from the TREC 2011 Microblog Track is shown on the left in Figure 1.2. At query

time, of course, this distribution is not known—it is the target of our prediction.

In the middle and right of Figure 1.2 are the term trends of the unigram cuts and

bigram service stuff, respectively. These are the temporal statistics of query terms,

and are known at query time, which can be utilized as features to estimate the

distribution of relevant documents. In this case, the query trend of bigram service

stuff provides a basis from which we can reconstruct the true relevance distribution.

Therefore, I explore two different approaches to exploit query trends:

• A linear ranking model that combines features based on temporal collection statis-

tics of query unigrams and bigrams, their entropies, other related signals.
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• A regression-based method that attempts to directly predict the distribution of

relevant documents from unigram and bigram query trends.

These two approaches are further combined in an ensemble model, which addition-

ally includes features derived from previous pseudo trend methods. Experimental

evaluations show that my proposed methods are significantly more effective than

competitive baselines, and detailed studies of feature combinations show the extent

to which different types of temporal signals impact retrieval effectiveness. These

pieces of work led to a short paper in ECIR [34] and a full paper in ICTIR [35]. The

details of these approaches are presented in Chapter 4.

1.2 Multi-Perspective Lexical Modeling for Tweet Search

Though existing neural ranking models [10, 36] have achieved state-of-the-

art effectiveness on many web search and NLP tasks. However, their effectiveness

remain unknown on the Twitter data, whose setting is quite different as traditional

webpages and newswire documents. I identify several important differences:

• Document length. Social media posts are much shorter than web or newswire

documents. For example, tweets are limited to 280 characters. Thus, ad hoc re-

trieval in this domain contains elements of semantic matching because queries and

posts are much closer in length. In particular, neural models that rely on sentence-

level or paragraph-level interactions and global matching mechanisms [37] are

unlikely to be effective.
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• Informality. Idiosyncratic conventions (e.g., hashtags), abbreviations (“Happy

Birthday” as “HBD”), typos, intentional misspellings, and emojis are prevalent in

social media posts. An effective ranking model should account for such language

variations and term mismatches due to the informality of posts.

• Heterogeneous relevance signals. The nature of social media platforms drives

users to be actively engaged in many real-world news and events; users frequently

take advantage of URLs or hashtags to gain exposure to their posts. Such hetero-

geneous signals are not well exploited by existing models, which can potentially

boost ranking effectiveness when modeled together with the textual content.

To this end, I present a novel neural ranking model for ad hoc retrieval over short

social media posts that is specifically designed with the above characteristics in

mind. My model aims to represent the relevance of a social media post to a query

in a multi-perspective manner, and has three key features:

• To cope with the informality of social media and to support more robust matching,

I apply word-level as well as character-level modeling, with URL-specific match-

ing. This allows us to exploit noisy relevance signal at different granularities.

• My model consists of hierarchical convolutional neural network layers to capture

latent semantic soft-match signals between queries and tweets from multiple lev-

els, starting from character-level and word-level to phrase-level, and finally to

sentence-level.

• I match the learning representations between queries and tweets as well as URLs
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with pooling-based similarity measurement layers, where term importance weights

are injected at each convolutional layer as priors.

Finally, all relevance signals are then integrated using a fully-connected layers to

yield the final relevance ranking. Optionally, the neural matching score can be inte-

grated with lexical matching via linear interpolation to further enhance effectiveness.

The model is compared to the state-of-the-art feature-based and neural-based base-

lines on four standard twitter datasets. Detailed ablation study is also performed

to examine the effectiveness contribution of each carefully-designed module. This

work leads to a full paper (preprint available [9]) which is currently under review.

1.3 Modeling Temporal Contexts for Voice Search

In recent years, voice-based interactions with computing devices are becom-

ing increasingly prevalent, driven by several convergent trends. The ubiquity of

smartphones and other mobile devices with restrictive input methods makes voice

an attractive modality for interaction: Apple’s Siri, Microsoft’s Cortana, and the

Google Assistant are prominent examples. Google observed that there are more

searches taking place from mobile devices than from traditional desktops [38], and

that 20% of mobile searches are voice queries [39]. The success of these products has

been enabled by advances in automatic speech recognition (ASR), thanks mostly to

deep learning.

Increasing comfort with voice-based interactions, especially with AI agents,

feeds into the emerging market on “smart homes”. Products such as Amazon Echo
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and Google Home allow users to control a variety of devices via voice (e.g., “turn

on the TV”, “play music by Adele”), and to issue voice queries (e.g., “what’s the

weather tomorrow?”). The market success of these products demonstrates that

people do indeed want to control smart devices via voice.

The context of my work is voice search on the Xfinity X1 entertainment plat-

form by Comcast, one of the largest cable companies in the United States with

approximately 22 million subscribers in 40 states. X1 refers to a software package

distributed on top of Xfinity’s most recent cable box, which has been deployed to

17 million customers since around 2015. X1 can be controlled via the “voice re-

mote”, which is a remote controller that has an integrated microphone to receive

voice queries from viewers. The current deployed system is based on a combination

of hand-crafted rules and machine-learned models to arrive at a final response. The

system has a diverse set of capabilities, which increases query ambiguity and mag-

nifies the overall challenge of understanding user intent. These capabilities range

from channel change to entity search (e.g., sports team, person, movie, etc.). In

addition, voice queries may involve general questions, from home security control

to troubleshooting the wifi network, or may be ultimately directed to external apps

such as Pandora.

1.3.1 Session Context Modeling

In the first part, I tackle the problem of navigational voice queries posed

against an entertainment system, where viewers interact with a voice-enabled remote
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controller to specify the program (TV shows, movies, sports games) they wish to

watch. If a viewer wishes to watch the popular series “Game of Thrones”, saying

the name of the program should switch the television to the proper channel. This

is simpler and more intuitive than scrolling through channel guides or awkwardly

trying to type in the name of the show on the remote controller. Even if the viewer

knows that Game of Thrones is on HBO, finding the right channel may still be

challenging, since entertainment packages may have hundreds of channels.

My work leverages a user’s query session as contexts. The session concept

in search engine originates from Web search and was formally defined in the early

2000s by Arlitt et al. [40] as “a sequence of requests made by a single end-user

during a visit to a particular site”. The basic assumption of a search session is that

users will continuously modify and resend their queries until they have found their

intended information or decided to give up. The behaviors users participate in a

session include submitting a query, clicking on returned URLs, reading the returned

documents and making decision of whether to reformulate a query or not.

User behaviors in voice sessions in entertainment domain are slightly different

from that in Web search, since we mainly consider a user’s reformulation behaviors

as the context. This simplification is because of that searching for programs on

an entertainment platform is not optimized for browsing webpages or clicking doc-

uments. Query reformulation is a more intuitive way to interact with TV when a

user has not found her intended program yet. Indeed, such kinds of explicit reformu-

lations are a gradual refinement and exposure of the user’s true information need.

For example, compare two sessions issued to the Xfinity entertainment platform
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for searching TV programs: [“tv shows”, “ncis”, “cargo fire”, “chicago fire”] and

[“espn”, “chicago sports”, “chicago fire”]. Although both end in the same query, it

is fairly clear that in the first case, the viewer is interested in the TV drama series

“Chicago Fire” (since the previous queries all mention other drama series), whereas

in the second session, it is clear that the viewer is interested in the sports team with

the same name.

The idea of modeling sessions as contexts is operationalized through a hierar-

chical recurrent neural network (HRNN) model, in which a query is first represented

by character and word sequences and converted to a semantic embedding represen-

tation through a RNN module, then another RNN module is stacked on top to

combine the session context and query representation for user intent prediction.

On a carefully-controlled laboratory experimental setting, the HRNN model out-

performs competitive neural and non-neural baselines by more than 7.5 absolute

points. Following the above promising laboratory experiments, the HRNN model

was packaged as a standalone software module that was deployed into production

to serve the live traffic. At present, the model serves millions of queries daily on

the Comcast Xfinity X1 platform [41] for which the existing system provides no

response (in other words, the most difficult queries). The model has substantially

increased end-to-end coverage, reducing the number of unhandled queries by three

quarters. On these queries, the HRNN definitively improved the customer experi-

ence two thirds of the time and arguably did not hurt in the other third. This work

has been published as a full CIKM paper [42], and more details can be found in

Chapter 6.
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1.3.2 Multi-Task Learning

Despite the success of the HRNN model in production, I noticed two main

shortcomings. First, the model adopts a classification-based approach, which is

unable to predict unseen programs (e.g., newly-added content). Furthermore, its

formulation has difficulty handling the long tail of rarely-watched programs. Second,

my analysis of millions of queries [43] reveals that they span the gamut from program

navigation to vague entertainment intents (e.g., looking for kids cartoons) to direct

commands (e.g., turning on closed captioning) to queries that have nothing to do

with entertainment (e.g., checking the weather). In fact, I find that around 40% of

queries are either ambiguous viewing intents or not related to viewing a program at

all. Obviously, a model based on program prediction cannot handle such queries.

These two main shortcomings motivated us to explore a different design.

To this end, I propose a novel multi-task neural architecture [41] in Chapter 7

for query understanding that jointly performs three distinct tasks:

(1) Program prediction to directly identify the program or channel referenced

in a viewer’s utterance, out of a catalog of tens of thousands of programs and

hundreds of channels.

(2) Intent classification to understand what the viewer wishes to do. The sys-

tem recognizes around one hundred intents, ranging from TV commands (record

a particular show) to entertainment intents that vary in specificity to non-

entertainment intents (e.g., how to troubleshoot the wifi connection).
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(3) Query tagging of each token in a viewer’s utterance with domain-specific labels

such as “entity”, “channel”, “modifier”, etc., drawn from a tag set of roughly a

dozen.

Program prediction, intent classification, and query tagging work together in a com-

plementary way. In cases where the decision overlaps—for example, the system

detects that the viewer’s intent is to switch channels, which is confirmed by the tag-

ging and program prediction modules—multiple sources of evidence reinforce the

system’s confidence in the decision. In cases where program prediction fails, tagged

tokens in the query can serve as keywords for searching the program catalog. For

example, given the query “watch Tom Hanks movies on HBO”, program prediction

may fail since the viewer is not looking for a specific program. The system, however,

can parse the query into a logical form via the query tags as follows and return a

list of options to the viewer. :

[person=“Tom Hanks” ∧ category=“movies” ∧ channel=“HBO”]

My multi-task model was evaluated on a large-scale user log, showing further effec-

tiveness gains against HRNN and other competitive baselines. More importantly,

it provides a unified framework for understanding voice queries that can express

a multitude of intents, shedding light on the design of other voice-enabled appli-

cations, such as Google Home, Amazon Alexa, etc. This part of work has been

published as a short paper in SIGIR [43] and a full paper in KDD [41]. This work

now serves as the core technology in Comcast Xfinity X1 entertainment platform,
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which won an Emmy award2 in 2017 for the technical contribution in advancing

television technologies.

1.4 Research Contributions

This dissertation makes five major contributions, which are successively intro-

duced from Chapter 3 to 7.

1. Starting with estimating the distributions of relevant documents from the

timestamps of an initial list of retrieved documents (pseudo trends), I pro-

pose an end-to-end neural framework for temporal modeling of pseudo trends.

It consists of a lexical modeling component for producing query–document

similarity vectors, and another temporal modeling component for capturing

temporal relevance signals. In addition, I propose a novel continuous hid-

den Markov model for selecting more expressive terms for query expansion,

which aims to establish connections to the relevant documents in bursty states.

Extensive experiments on TREC Microblog collections verify the superior ef-

fectiveness of the proposed temporal techniques.

2. In addition to the pseudo trend methods, I also explore a new source of tem-

poral signal based on term statistics evolutions in collections (query trends). I

propose two different approaches to exploiting query trends: a linear ranking

model based engineered features and a regression-based model that aims to

recover the distribution of relevant documents directly from the query trends.

2https://corporate.comcast.com/news-information/news-feed/

comcast-wins-emmy-award-for-x1-voice-remote-technology
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In addition, I present a comprehensive study of combining query trend and

pseudo trend signals in a linear ranking model. Experimental results show

query trend methods alone are as competitive as the state-of-the-art pseudo

trend methods, albeit substantially faster, while combining them together

yields significant better results.

3. I highlight three important characteristics of social media posts that make

lexical modeling over such collections different from searching web pages and

newswire documents. Starting from these insights, I developed MP-HCNN, a

novel neural ranking model specifically designed to address these character-

istics. Extensive experiments on Twitter collections show that my proposed

model significantly outperforms competitive learning-to-rank approaches and

many recent state-of-the-art neural ranking models. To my best knowledge,

the multi-perspective model is also the first neural ranking model developed

specifically for ad hoc retrieval over social media posts.

4. I present novel deep neural network models to efficiently search TV programs

with voice requests. This work serves as the first study on the voice search

problem in the entertainment domain, in which users are sitting in front of

TV and looking for programs to watch. I introduce several unique challenges

in this domain, including the short lengths of voice queries, underlying speech

recognition errors, and query ambiguities, which are solved in a novel proba-

bilistic framework in which recurrent and feedforward neural network modules

are organized in a hierarchical manner. Evaluations on a large real-world
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dataset demonstrate the effectiveness of context-aware models, significantly

outperforming strong baselines as well as the current deployed system. The

best model has been launched into production, serving millions of voice queries

per day.

5. I propose a novel multi-task problem formulation and neural architecture for

general voice query understanding on an entertainment platform. This study

is motivated by the fact that the intents of voice queries span the gamut

from program navigation to vague entertainment intents (e.g., looking for kids

cartoons) to queries that have nothing to do with entertainment. To this end,

I decompose the task of query understanding into jointly performing three

related tasks: program prediction, intent classification, and query tagging.

The novel multi-task learning model, is evaluated through carefully-controlled

laboratory experiments, which demonstrates further gains in effectiveness and

increased system capabilities.

1.5 Outline

This dissertation is structured as follows: in Chapter 2, I discuss some related

work on information retrieval, neural networks, voice search and multi-task learning.

Then I present my temporal modeling techniques on pseudo trend in Chapter 3, and

the query trend methods in Chapter 4. The multi-perspective approach for lexical

modeling is introduced in Chapter 5. Next, I articulate the voice search problem

on an entertainment platform and present a hierarchical recurrent neural network

19



based model for session modeling in Chapter 6. The multi-task model is introduced

in Chapter 7. Finally I conclude this dissertation and discuss some future work in

Chapter 8.
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Chapter 2: Related Work

2.1 Information Retrieval

Manning et al. [3] provide a broad definition of information retrieval as below:

“Information retrieval (IR) is finding material (usually documents) of an un-

structured nature (usually text) that satisfies an information need from within large

collections (usually stored on computers).”

An information retrieval (IR) system takes a query q issued from a user reflect-

ing his information need as input, ranging from a few words to an entire document.

In some cases, the query q can also be a multimedia source, such as an image or

a video, which is out of scope in this dissertation. The IR systems then process

the indexes of collections stored in computers and return a list of information re-

sources (usually documents d) to the user ordered by their degrees of relevance to

the query. The main task for IR system is to compute the relevance score P (d|q)

for each document in the collection, given a query q.
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2.1.1 Classical Ranking Models

Ranking is the core problem in many information retrieval and natural lan-

guage processing tasks, i.e, ad hoc retrieval [35, 44, 45] and question answering [31,

46–49] and textual similarity join [50]. Developed decades ago, the three major

categories of widely-used ranking models in IR are: vector space model [51], prob-

abilistic model [4], and language model [52]. The vector space model represents

queries and documents as vectors:

q = (t1,q, t2,q, ..., tm,q)

dj = (t1,j, t2,j, ..., tn,j)

Each dimension represents a term. If a term occurs in a query q or a document dj,

its value is non-zero. The relevance of a document to a query is measured as the

cosine similarity of the two vectors. There have been numerous mechanism for term

weightings, and tf-idf is one of the best known schemas. In the tf-idf weighting, the

weight of a term t in a document d is calculated by the product of term frequency

tf and inverse document frequency idf , which are computed as below:

tf(ti, d) = counts of term ti in document d

idf(ti) =
number of documents contain term ti
number of documents in the collection

where term frequency refers to the relevance of the term within the document con-

text, whereas the inverse document frequency corresponds to the specificity and

“rareness” of the term.
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Given the query and document representations, the IR system has an un-

certain guess of how likely the document contain relevant content to the query.

Probabilistic models aim to provide a more principled reasoning behind such un-

certainty with probability theory. The difference of probabilistic models and vector

space model is not that big as many probabilistic models also adopt tf-idf weighting.

For a probabilistic model, it’s just that, the relevance is not computed through a

cosine similarity but by a slightly different formula motivated by probabilistic the-

ory. BM25 [4] is a canonical example of probabilistic model, with its formula shown

below:

P (d|q) =
∑
ti∈q

log idf(ti)
(k1 + 1)tf(ti, d)

k1((1− b) + b× (Ld/Lave)) + tf(ti, d)

where Ld and Lave are the length of document d and the average length of all

documents in the collection, k1 and b are tunable parameters.

The language modeling approach models the likelihood of generating a query

from the relevant documents. It first builds a probabilistic language model Md

from each document d, then ranks the documents by the possibility of the model

generating the query. The basic and most commonly-used language model is Query

Likelihood model [52]:

P (d|q) ∼ P (q|d)P (d)

P (q|d) =
∏
ti∈q

P (ti|Md) =
∏
ti∈q

tf(ti, d)

Ld

where the above equation uses the simple maximum likelihood estimate to model the

term generation probability P (ti|Md). Note that some smoothing functions are also
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commonly used to incorporate collection frequency in P (ti|Md), such as bayesian

smoothing and Dirichlet smoothing.

2.1.2 Retrieval

In addition to ranking, retrieval is another major component of information

retrieval systems. Due to the large size of document collection, it’s infeasible to

enumerate all the documents to compute the ranking score given a query. There-

fore, the inverted index files are built to accelerate the computation by ignoring the

documents that don’t contain any query terms. Basically, inverted indexes are map-

pings from term ids to postings lists, which are lists of unique document identifiers

that contain the particular term, along with some other information, such as term

frequencies and positions of the term in each document.

In retrieval, there are two main approaches to traverse inverted indexes and

compute query-document scores: document-at-a-time (DAAT) and term-at-a-time

(TAAT). In DAAT, the inverted indexes are sorted by document identifiers and term

frequencies are stored separately. When a query arrives, DAAT processes document

one by one, computing the query-document score until moving to the next document.

As a result, we only need to process documents that appear in the union of query

terms’ postings lists. Some additional optimization strategies are applied in DAAT

for minimizing the scoring computation when traversing the postings lists for all of

the query terms simultaneously. This is achieved by precomputing a value vt that

represents the maximum contribution term t can have for the scoring model. When
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the sum of the vt scores is less than the minimum score of top k documents, we can

safely skip to the next postings list to save computation. Such idea is implemented

in WAND [53] and its successor BMW [54], which are the two most popular DAAT

strategies today.

In TAAT evaluation, as the name suggests, we process the postings lists of each

query term in turn. The postings lists are stored in a separate manner as DAAT,

where document identifiers are grouped by term frequency. Within each grouping,

document ids are sorted from small to large, while the groupings are arranged in a

decreasing order of term frequency. This enables further optimization such as early

termination, in which we can terminate the processing of a postings list when the

term frequency falls behind a threshold. Another useful optimization trick is to

process terms with higher idf values first, since higher idf values can imply higher

contribution to the scoring model. Such ideas have been implemented by Moffat et

al. [55] and Anh et al. [56].

In addition to DAAT and TAAT, another thread of query evaluation strategy is

called score-at-a-time (SAAT), where postings lists are ordered by a decreasing order

of impact score. Lin and Trotman propose JASS [57], a modern implementation of

SAAT, followed by an empirical comparison between DAAT and SAAT by Crane et

al. [58].
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2.1.3 Learning to Rank

Learning to rank (L2R) is a field that takes advantage of recent advances in

machine learning to improve ranking effectiveness. Existing work on L2R can be

summarized into three main categories: pointwise, pairwise, and listwise. The main

difference lies in the problem formulations with different assumptions, input/output

spaces and loss functions. Pointwise methods, such as logistic regression [59], focus

on learning a relevance score for each query-document pair represented in a feature

space, while pairwise approaches, such as LambdaMART [60] and RankSVM [44],

aim to learn the preference between a pair of documents to a query. Listwise ap-

proaches, such as ListNet [45], directly optimize the input list of documents to a

query to find the best-ranked list. The major drawback of L2R is that it requires ef-

fective hand-crafted feature engineering, which can be time-consuming, incomplete,

and difficult to generalize to other problems.

2.1.4 Temporal Information Retrieval

There is a long thread of research exploring the role of temporal signals in

search [16, 17, 21, 22, 26, 29, 34, 61], and it is well established that for certain tasks,

better modeling of the temporal characteristics of queries and documents can lead

to higher retrieval effectiveness.

For example, Jones and Diaz [15] study the temporal profiles of queries, clas-

sifying queries as atemporal, temporally ambiguous, or temporally unambiguous.

They showed that the temporal distribution of retrieved documents can provide an
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additional source of evidence to improve rankings. Building on this, Li and Croft [26]

introduce recency priors that favor more-recent documents. Dakka et al. [61] propose

an approach to temporal modeling based on moving windows to integrate query-

specific temporal evidence with lexical evidence. Efron et al. [22] present several

language modeling variants that incorporate query-specific temporal evidence. The

most direct point of comparison to our work (as discussed in Chapter 3.2) is the use

of non-parametric density estimation to infer the temporal distribution of relevant

documents from an initial list of retrieved documents [16,33].

There have been several other studies of time-based pseudo relevance feedback.

Keikha et al. [62] represent queries and documents with their normalized term fre-

quencies in the time dimension and used a time-based similarity metric to measure

relevance. Craveiro et al. [63] exploit the temporal relationship between words for

query expansion. Choi and Croft [64] present a method to select time periods for

expansion based on users’ behaviors (i.e., retweets).

In addition to ranking, modeling temporal signals has also been shown to

benefit related tasks such as behavior prediction [65], time-sensitive query auto-

completion [66], and real-time event detection [67, 68]. For example, Radinsky et

al. [65] build predictive models to learn query dynamics from historical user data.

2.1.5 Evaluation

The two fundamental measures for evaluating the effectiveness of an informa-

tion retrieval system are precision and recall. The precision measures the ratio of
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correctness of identified relevant documents, whereas the recall measures the ratio

of correct documents we have identified from the true candidate pool. Applications

need to balance precision and recall to obtain satisfactory user experiences. For

example, web search emphasizes more on precision and hopes the top ranked docu-

ments to be more relevant, while professional searchers, such as paralegals, may try

to get as high recall as possible. F-score (or F1 score) provides a way to combine

precision and recall without any prior preference:

F1 =
2× precision× recall

precision + recall

However, precision, recall and F1 are both set-based measures computed on

unordered sets of documents, which makes them inappropriate for evaluating ranked

retrieval results. As a result, precision-recall curve plots the precision value as

a function of recall, reflecting the changes of system’s effectiveness (precision) as

the number of retrieved documents (recall) increases. An approximation to the

precision-recall curve is the average precision (AP) metric. It starts from the highest

ranked document, and computes the precision at every relevant document in the

ranked list until the list is exhausted, then it divides the sum of these precision

values by the total number of retrieved documents. The mean of AP values across a

set of queries is called mean average precision (MAP), which has become the most

standard effectiveness measure in the TREC community.

Other measures are also commonly seen in the IR community. For example,

Precision at K measures the precision of the top K retrieved documents. DCG at
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K is used in cases where the relevance assessments are not made in binary scale,

which refers to discounted cumulative gain and computes the total gain of the top K

retrieved documents. The gain of the i-th document di in the ranked list is measured

as gi = relevance(di)/max(1, log(i)). The NDCG at K normalizes the DCG score

into [0, 1] range by dividing the upper bound.

2.2 Deep Learning

2.2.1 Convolutional Neural Networks

The core building block of convolutional neural networks [2] is the convolu-

tional layer. A convolutional layer comprises of a number of convolutional filters (or

kernels), with each filter having a small receptive window with learnable parameters.

In most natural language processing applications, the inputs to the convolution layer

is a two-dimension matrix, which denotes an embedding representation of a text se-

quence. Assume the input is a matrix D with shape Rn×l, where n is the number of

elements in the input and l is the size of embedding. The small receptive window of

a kernel can be parameterized by a weight term W ∈ Rw×h and a bias term b ∈ R.

We move this filter through the input text gradually, and at each position (i, j), we

compute the dot product the entries of the filter weight and input matrix:

Oi,j =
i+w−1∑
p=i

j+h−1∑
q=j

Wp,qDp,q + b

.
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Figure 2.1: The well-known LeNet architecture [2]

The output O has a shape R(n−w+1)×(l−h+1). It’s also a common practice to set the

filter height h as the same as the embedding size l, from which we will obtain a output

vector O ∈ Rn−w+1. The major insight of a convolutional operation is to capture

spatially local correlation via parameter-sharing receptive filters. A convolutional

operation is often coupled with pooling mechanism, such as max pooling and min

pooling, to extract the discriminant features and filter noises from raw convolutional

outputs. Figure 2.1 shows the well-known LeNet architecture [2], which comprises of

multiple convolution layers in a sequential manner. Convolutional neural networks

have achieved huge successes in many applications, like image recognition [69], object

detection [70], language modeling [30], etc.

2.2.2 Recurrent Neural Networks

Recurrent neural networks (RNN) is a classical category of neural networks

where connections between nodes form a directed graph to exploit dynamic temporal

information along a sequence. It has many applications in sequence modeling tasks,

such as speech recognition [71], hand writing recognition [72], etc. Long Short-Term

Memory (LSTM) [73] networks is a type of RNN. It’s well-known for being able to
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capture long-range context dependences over input sequences. This is accomplished

by using a sequence of memory cells to store and memorize historical information,

where each memory cell (shown in Figure 2.2) contains three gates (input gate, forget

gate, and output gate) to control the information flow. The gating mechanism

enables the LSTM to handle the gradient vanishing/explosion problem for long

sequences of inputs.

Given an input sequence x = (x1, ..., xT ), an LSTM model outputs a sequence

of hidden vectors h = (h1, ..., hT ). A memory cell at position t digests the input

element xt and previous state information ht−1 to produce the more recent state ht

as follows:

it = σ(Wxixt +Whiht−1 + bi)

ft = σ(Wxfxt +Whfht−1 + bf )

ot = σ(Wxoxt +Whoht−1 + bo)

ct = ft · ct−1 + it · σ(Wxcxt +Whcht−1 + bc)

ht = ot · tanh(ct)
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where W terms are weight matrices, b terms represent bias vectors, σ is the sigmoid

activation function, and i, f , o and c are respectively the input gate, forget gate,

output gate and cell vectors, with each having the same size as the output vector h.

In many application scenarios, the input sequence x can vary in length for

different instances (i.e., queries can have different number of words and characters

in our task). There are two standard ways to handle this variable length issue. One

way is to do an initial scan over a single batch or the whole dataset to obtain the

maximum sequence length, then create an array of memory cells with the maximum

length. Whenever a sequence element xt arrives, the memory cell at index t will

digest the input element and produce the hidden state ht. The other way is to

dynamically allocate space for storing new memory cells only when the arriving

instance x has larger length than all previous instances. The created LSTM memory

cells all share the same parameters.

A natural extension to RNN/LSTM is to model the sequence from both pos-

itive time direction and negative time direction, which is proposed as bidirectional

RNN [74]. Another popular category of RNN is called Gated Recurrent Units

(GRU), introduced by Cho et al. [75] in 2014. It achieves on-par performance as

LSTM in tasks like machine translation, polyphonic music modeling, and speech

signal modeling, but has fewer parameters than LSTM as it lacks an output gate.
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2.2.3 Semantic Similarity Measurement

Recent years have witnessed many successes of deep learning in natural lan-

guage processing tasks [27, 76–79], such as question answering [31, 46], paraphrase

detection [80], machine comprehension [81,82], and textual semantic similarity mod-

eling [76]. Many of these tasks can be treated as variants of a semantic match-

ing problem, where two pieces of texts are jointly modeled through distributed

representations of sentences for similarity learning. Various neural network archi-

tectures have been proposed for modeling semantic matching. For example, the

classical Siamese architectures [83] have been applied to many neural network mod-

els [30,31,46] nowadays, where two pieces of texts share the same module and param-

eters for representation learning. For machine translation, the sequence-to-sequence

model [27, 28] has been widely used, which aims to produce the next token given

the source sentence and tokens have been generated. The attention mechanism,

first introduced by Bahdanau et al. [84] to enhance the sequence-to-sequence model

for token prediction based on semantic closeness to past tokens in machine trans-

lation, has become popular in many other tasks, such as question answering [85],

machine comprehension [82], relation extraction [86], sentiment analysis [87] and

recommendation [88].

2.2.4 Neural Information Retrieval

The current neural approaches for IR can be divided into representation-

based [11,31,36] and interaction-based [9,10,89–91] approaches. The early attempts
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on neural IR mainly focus on representation-based modeling between query and doc-

ument, such as DSSM [11], C-DSSM [36], and SM-CNN [31]. DSSM [11] is a classical

NN architecture for Web search that maps word sequence to character-level trigrams

by using a word hashing layer, and then feeds the dense hashed features to a multi-

layer perceptron (MLP) for similarity learning. C-DSSM [36] extends this idea by

replacing the MLP in DSSM with a convolutional neural network-based (CNN) layer

to capture local contextual signals from neighboring character trigrams. SM-CNN

can be viewed as a hybrid approach with a main component of a convolutional layer

for learning discriminative representations of query and document and a feature

layer that exploits hand-crafted features.

Interaction-based approaches [10, 89–91] model on the similarity matrix of

word pairs from the query and document. The preparation of similarity matrix is

usually computed through word embeddings, such as word2vec [92], which solves

the sparsity issue of count-based approaches. The DRMM approach [10] introduces

a pyramid pooling technique to convert the similarity matrix to histogram repre-

sentations, on top of which a term gating network aggregates weighted matching

signals from different query terms. Inspired by DRMM, Xiong et al. [89] propose

K-NRM that introduces a differentiable kernel-based pooling technique to capture

matching signals at different strength levels. Dai et al. [90] extends this idea to

model soft-match signals for n-grams with an additional convolutional layer. The

DUET model [91] combines the representation-based and interaction-based idea

with a global component for the semantic match and a local component for the

exact match.
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There are also some work that combine neural networks with learning to rank.

Previously, I have introduced a noise-contrastive estimation technique [46] with

pairwise sampling strategies on pointwise neural network models, which achieves

state-of-art performance on a popular benchmark of answer sentence selection. Ai

et al. [93] propose a listwise context model with attention-based loss function, which

outperforms many learning-to-rank and neural methods by a large margin.

2.3 Voice Search

Along with rapid improvements in speech recognition technologies, there has

been work on tackling voice search [94–98] in different applications. However, to

our knowledge we are the first to focus on voice queries directed at an entertain-

ment system. How is this particular domain different? The setting is obviously

different—in our case, viewers are clearly sitting in front a television with an en-

tertainment intent. To compare and contrast viewers’ actual utterances, we can

turn to previously-published work that studied the characteristics of voice search

logs, especially in comparison to text search data [99–102]. Schalkwyk et al. [102]

report statistics of queries collected from Google Voice’s search logs which found

short queries, in particular 1-word and 2-word queries, were more common in voice

search setting, while long queries were much rarer. In contrast, in a more recent

study, Guy et al. [101] report that voice queries tend to be longer than text queries,

based on a half-million query dataset from the Yahoo! mobile search application.

The average length across 32M voice queries was 2.04 in our dataset, much shorter
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than the reported average of 4.2 for Yahoo voice search1 [101].

There is also research on voice query reformulations which is relevant to our

work on modeling sessions [103–106]. For example, Jiang et al. [103] analyze different

types of voice recognition errors and users’ corresponding reformulation strategies.

Hassan et al. [104] build classifiers to differentiate between reformulated and non-

reformulated query pairs. The study by Shokouhi et al. [105] suggests that users

don’t prefer to switch between voice and text when reformulating a new query. A

more recent paper [106] propose an automatic way to label voice queries by exam-

ining the post-click and reformulation behaviors, which produced a large amount of

“free” training data to reduce ASR errors.

2.4 Multi-Task Learning

Multi-task learning (MTL) is a machine learning paradigm where objectives for

multiple related tasks are optimized together. The main intuition is that when mul-

tiple tasks are not independent, joint training reinforces individual tasks and results

in better generalization across shared parameters. Since its introduction [107], MTL

has been studied for many different problems, including computer vision [108, 109]

as well as text and web applications [110–112]. Collobert and Weston use MTL

to jointly learn six different NLP tasks [111]. For web search ranking, Chapelle

et al. [112] claim that MTL yields improvements by allowing implicit data shar-

ing and regularization across different tasks using different datasets. Deep learning

1Similar conclusions follow for other length-based statistics: median was 2 (vs. 4), maximum
was 69 (vs. 109), and standard deviation was 1.23 (vs. 2.96).
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has recently started to receive more attention from MTL: for example, multi-task

encoder–decoder architectures are proposed to improve accuracy in machine trans-

lation by jointly training for parsing and caption generation [108].
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Chapter 3: Temporal Modeling of Pseudo Trends for Tweet Search

3.1 Introduction

There is a large body of literature in information retrieval that has established

the importance of understanding and modeling the temporal distribution of docu-

ments as well as queries for various information seeking tasks [16,17,21,22,26,61,65].

This is particularly important when searching rapidly-evolving, real-time social me-

dia streams such as Twitter, which is the focus of this work. Given an information

need expressed as a query, we wish to develop ranking models that incorporate

temporal information and return relevant tweets. I refer this problem as temporal

ranking to emphasize the need to model temporal aspects of the information need

as well as the document collection.

One successful approach to temporal ranking is to estimate the distribution of

relevant documents using the distribution of document timestamps from the results

of an initial query [16]. This approach is motivated by Efron et al.’s temporal cluster

hypothesis [16], which stipulates that in search tasks where time plays an important

role (such as tweet search), relevant documents tend to cluster together in time,

and that this property can be exploited to improve search effectiveness. Just as

van Rijsbergen’s “classic” cluster hypothesis suggests that documents relevant to a
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query form clusters in term space, Efron et al. suggest that documents relevant to

a query form clusters along a timeline.

The temporal cluster hypothesis is illustrated by the visualizations in Fig-

ure 1.1, similar to those presented by Efron et al. [16], which help illustrate the

intuition behind my techniques. These visualizations show three queries (topics)

from the TREC 2011 Microblog Track. In each timeline, the query time (the time

at which the query was issued) is anchored to the right edge; the x-axis shows time

prior to the query time, in days. Dots show tweets that were retrieved by participat-

ing teams and evaluated by assessors (i.e., the pools): green dots are relevant, red

dots are highly relevant, and gray dots are not relevant. The underlying blue bars

show the distribution of relevant and highly-relevant tweets as a histogram. As we

can see, relevant tweets for query 14 and 30 tend to cluster together in time, while

relevant tweets for query 6 are more evenly distributed. Across all queries from

the TREC test collections, we can observe many timelines that exhibit temporal

clustering (like query 14 and 30).

Efron et al. [16] proposes an approach based on kernel density estimation

to estimate the temporal distribution of relevant documents, where each docu-

ment’s timestamp is viewed as a Gaussian kernel and the estimation process takes

a weighted average of all kernels. This approach has demonstrated state-of-the-art

effectiveness on modeling pseudo trends for ranking. Inspired by the recent success

of neural networks [27,84], I explore an alternative approach for temporal modeling

of pseudo trends using recurrent neural networks. Such models have been success-

fully applied to many sequence learning tasks in natural language processing where
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the modeling units are temporally dependent (e.g., tagging and parsing). I draw a

connection between the temporal clustering of documents, where the relevance of

one document may affect its neighbors, to a sequence learning task, and explore

the hypothesis that recurrent neural networks provide a rich, expressive modeling

framework to capture such temporal signals.

To this end, I propose a unified neural framework to integrate lexical and

temporal relevance signals. The framework consists of a lexical modeling component

for producing query–document similarity vectors and another temporal modeling

component for capturing temporal relevance signals. I start with a few state-of-

the-art neural ranking models [11,30] as the lexical component, where the temporal

model is stacked on top to explore the temporal interactions between neighboring

documents.

In addition to directly modeling pseudo trend for reranking, I also consider

to using pseudo trend for query expansion. Query expansion techniques, especially

those based on pseudo-relevance feedback, aim to solve the classical vocabulary

mismatch issue by augmenting the initial query with teams that are more likely

to appear in relevant documents. In standard formulations of pseudo-relevance

feedback, the timestamp of a document is not considered in identifying expansion

terms—yet we know from Figure 1.1 that relevant documents are bursty and usually

occur in temporal clusters, and that this signal should be incorporated into the

relevance feedback model. The main insight of my work is that term expansions

should be biased to draw from documents that occur in the bursty temporal clusters.

This is formally captured by a continuous hidden Markov model (cHMM), in which
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the temporal distribution of documents (not necessarily relevant) is represented by

a sequence of hidden states; the probability of generating a particular number of

documents from each state follows a Gaussian distribution. When identifying term

expansions, we only select documents from bursty states. Experimental evaluations

on test collections from the TREC 2011 and 2012 Microblog Tracks show that this

approach is significantly more effective for selecting informative expansion terms

than standard query expansion techniques without temporal information.

I make the following contribution in this chapter:

• I present, to my knowledge, the first end-to-end neural network architecture that

integrates lexical and temporal signals. Using the best lexical modeling com-

ponent, my model is able to obtain significant improvements over competitive

temporal baselines on standard tweet test collections.

• I introduce a novel query expansion technique that incorporate time information

to select the most informative expansion terms with continuous hidden Markov

model. Experiments on standard TREC collections demonstrate the state-of-the-

art effectiveness of my approach.

This chapter is organized as follows: I first discuss some related work on tempo-

ral modeling of pseudo trends as a background in Chapter 3.2, then I introduce

the end-to-end neural framework for integrating lexical and temporal evidence in

Chapter 3.3. Next, I present my approach of utilizing pseudo trends for temporal

query expansion in Chapter 3.4. The Twitter datasets are introduced in Chap-

ter 3.5, which we evaluate the proposed models across this chapter and the next

41



two chapters. Evaluations are presented in Chapter 3.6 and the conclusion follows

in Chapter 3.7.

3.2 Background and Related Work

As a starting point, I introduce several existing methods for modeling pseudo

trends, which are used as baselines for comparison in the experiments in this chap-

ter and the next chapter. Let’s first consider the simple query-likelihood approach

in the language modeling framework [52].1 Documents are ranked by P (D|Q) ∝

P (Q|D)P (D), where P (Q|D) is the likelihood that the language model that gener-

ated document D would also generate query Q, and P (D) is the prior distribution.

One of the simplest way to let time influence ranking was proposed by Li and

Croft [26], in the form of a document prior that favors recently published documents.

If TD is the timestamp associated with document D, P (D) could take the form of

an exponential distribution (with rate parameter λ ≥ 0):

P (D) = λe−λTD (3.1)

Though previous studies have shown that recency priors increase overall effective-

ness, by definition they are query-independent. This, however, is problematic be-

cause we know that the dependencies between time and relevance vary from query

to query [15]. Figure 1.1 clearly shows that this is the case: we would expect recency

1Note that this section, up through Chapter 3.2, reuses some of the text from Efron et al. [16]
(with the permission of those authors).
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priors to be effective for query 30, but such techniques are not likely to be effective

for information needs represented by query 14, where the relevant documents are

not clustered close to the query time.

To address this issue, Dakka et al. [23] proposed a query-specific way to com-

bine lexical and temporal evidence in the language modeling framework by separat-

ing the two components: WD, the words in the document and TD, the document’s

timestamp. This leads to the following derivation:

P (D|Q) = P (WD, TD|Q) (3.2)

= P (TD|WD, Q)P (WD|Q) (3.3)

∼ P (WD|Q)P (TD|Q) (3.4)

where the last step follows from Eq. (3.3) if we assume independence between content

and temporal evidence. More generally, we take the view that there are two sources

of evidence that we need to integrate in document ranking: P (R|WD, Q), based on

document content, and P (R|TD, Q), based on temporal evidence.

For content relevance, we adopt a standard query-likelihood model, that is,

P (R|WD, Q)
def
= P (Q|D). (3.5)

By assuming term independence and a multinomial language model, we have:

P (Q|D) =

c(Q)∏
i=1

P (qi|θD) (3.6)
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for the language model θD, where c(Q) is the number of terms in the query. Using

Bayesian updating with a Dirichlet prior parameterized by the real vector µP (w|C),

we have the estimator:

P̂ (w|D) =
c(w,D) + µP (w|C)

c(w,D) + µ
(3.7)

where P (w|C) is the term probability given the language model of the entire corpus,

and c(w,D) is the count of term w in document D.

Now consider P (R|TD, Q), the probability of relevance of document D to Q

given temporal information. To combine content and temporal evidence, we can use

a log-linear model, as Efron et al. [16] have done. For a parameter α ∈ [0, 1], we can

rank documents as follows:

logPα(R|D,Q) = Zα + (1− α) logP (R|WD, Q)

+ α logP (R|TD, Q)

(3.8)

where Zα is a normalization constant. Since Zα does not depend on D for ranking,

we can ignore it. The parameter α can be estimated from a set of training topics.

In essence, we can think of Eq. (3.8) as a very simple linear feature-based

ranking model [113], albeit with only two features. The more general form of such

a model is:

Sd =
∑
i

αi · Fi(d, q) s.t.
∑
i

αi = 1. (3.9)
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Accepting this view, P (R|TD, Q) no longer needs to be a probability distribution,

but can be any arbitrary feature (e.g., of a document’s timestamp). In fact, it doesn’t

need to be just one single feature, which allows us the flexibility to combine multiple

sources of temporal evidence in a well-established document ranking framework.

One natural source of temporal evidence for document ranking is the temporal

distribution of documents retrieved by an initial bag-of-words query. This thread

of work was explored by Efron et al. [16] and later expanded by me in [33] for

reproduction. Here, I summarize these work.

The theoretical motivation for modeling the distribution of initial retrieved

documents is what Efron et al. [16] call the temporal cluster hypothesis : that relevant

documents tend to cluster together in time. We assume that there is a density

fQ over the time span of the document collection, such that fQ is large for times

where relevant documents are likely to appear and small during times where we are

unlikely to find relevant documents. Intuitively, we want to promote documents

whose timestamps coincide with large values of fQ, i.e., temporal regions where

relevant documents “cluster together”.

To estimate fQ, Efron et al. take advantage of kernel density estimation

(KDE), which is a non-parametric method to approximate a density by analyzing

data generated from that density, applied to the distribution of document times-

tamps from an initial bag-of-words query.

Let {x1, x2, . . . , xn} be an i.i.d. sample drawn from some distribution with an

unknown density f . We are interested in estimating the shape of this function f .
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Its kernel density estimator is:

f̂(x) =
1

nh

n∑
i=0

K

(
x− xi
h

)
(3.10)

where K(·) is the kernel—a symmetric but not necessarily positive function that in-

tegrates to one—and h > 0 is a smoothing parameter called the bandwidth. Though

many kernel functions are viable, Efron et al. use the common Gaussian distribution,

such that:

K

(
x− y
h

)
= N

(
x− y
h

, 0, h

)
(3.11)

where N is the normal density. Efron et al. chose the Gaussian kernel for two rea-

sons. First, as shown below, it gives a ready plug-in value for the optimal bandwidth

h. Second, experimentally Efron et al. found that the choice of kernels has almost

no effect on the effectiveness of the methods.

A kernel density estimate is very similar to a histogram. However, KDE re-

quires no binning of data, offloading the bias/variance tradeoff to the choice of

bandwidth, which has well-defined methods of selection. One key advantage in us-

ing KDE versus histograms for estimating f is KDE’s ability to handle weighted

observations naturally. If we have {ω1, ω2, . . . , ωn}, a vector of non-negative weights

on our observed X’s such that
∑
ωi = 1, then

f̂ω(x) =
1

nh

n∑
i=0

ωiK

(
x− xi
h

)
(3.12)

is also a proper density: f̂ω is similar to f̂ , except that we allocate different weights
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to the kernels. As noted by Hall and Turlach [114], ωi can be interpreted as the

probability associated with xi. Unless otherwise specified, in this paper, the phrase

kernel density estimate refers to Eq. (3.12).

KDE, via Eq. (3.12), presents a simple framework for weighting observations

(document timestamps) during density estimation. The intuition behind the weight

ωi for document Di is that this quantity corresponds to our prior belief that the

corresponding timestamp Ti was truly generated by fQ. Efron et al. proposed three

weighting schemes:

• Uniform weights. The simplest approach is to give all documents in the initial

results equal weights.

• Score-based weights. We can weight each document based on its query-likelihood,

i.e.,

ωsi =
P (Q|Di)∑n
j=1 P (Q|Dj)

. (3.13)

• Rank-based weights. We can adopt a rank-based scheme that preserves the

ordering in the initial results, but not the actual scores, via an exponential

distribution:

ωri =
λe−λri∑n
j=1 λe

−λri
(3.14)

where λ > 0 is the rate parameter of the exponential and ri is the rank of

document Di in R. Though we could leave λ as a tuneable parameter, a

simpler approach is to use the maximum likelihood estimate. If R contains
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n documents, the MLE of λ is simply 1
r̄
, where r̄ is the mean of the ranks

1, 2, . . . , n.

All the KDE techniques proposed above are applied over an initial ranked

list of documents retrieved using a bag-of-words query, and thus require no manual

intervention. However, as an upper bound oracle condition, we can perform KDE

directly on the known relevant documents (from assessor judgments). This quantifies

the effectiveness upper bound of models that take the form of the log-linear model

in Eq. (3.8) and provides a point of reference for comparing other models. The

KDE method introduced above is also considered as the state-of-the-art on modeling

pseudo trends.

3.3 Neural Framework to Integrate Lexical and Temporal Signals

By now I have introduced a number of existing methods to model the pseudo

trends. In this section, I present a neural network-based approach to model pseudo

trends, which integrates lexical and temporal signals in an end-to-end manner, as

shown in Figure 3.1. The overall architecture consists of distinct components for

lexical modeling, to capture query–document similarity, and temporal modeling, to

capture relevance signals contained in the temporal sequencing of documents. The

two components are independent and in particular we can view the lexical modeling

component as a black box, allowing us to explore different architectures. However,

the entire model is trained end-to-end in a two-stage process, which is explained in

Chapter 3.3.3.
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Figure 3.1: My neural network architecture that integrates lexical and temporal
signals. The lexical modeling component can be viewed as a black box for producing
query–document similarity vectors. A temporally-ordered sequence of these vectors
feed into our bidirectional LSTM for temporal modeling.

Lexical Modeling. The architecture for the lexical modeling component is shown

in the lower half of Figure 3.1, where each “slice” of the network is identical (i.e.,

with shared parameters). Each instance of the model takes as input a query and a

document to generate a query–document similarity vector v. This is accomplished

by translating an input sequence of tokens (either the query or the document) into

a sequence of distributional vectors [w1, w2, ...w|S|], where |S| is the length of the

token sequence, from a word embedding lookup layer. The resulting matrix then

feeds into a neural network. At a high level, this similarity model can be viewed as

a black box, but I describe several instantiations below.

Temporal Modeling. The architecture of the temporal modeling component is

shown in the upper half of Figure 3.1. I use a bidirectional LSTM where the inputs

are the query–document similarity vectors from the lexical modeling component,

sorted in time order. That is, documents from the training set are temporally
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ordered, and the lexical modeling component is applied to the query paired with

each individual document to yield a collection of query–document similarity vectors

{v0, v1, . . . , vn}. The output of the bidirectional LSTM feeds into a fully-connected

layer plus softmax to yield a prediction of document relevance y. Note that each

instance of the fully-connected layer and softmax share parameters. In what follows,

I describe each of the components in detail.

3.3.1 Lexical Modeling Component

In this part, I considered three existing approaches to generating query–

document similarity vectors. All three adopt what is commonly known as a “Siamese”

structure [83], with two subnetworks processing the query and document in parallel,

yielding a “joined” representation that feeds into a relevance modeling component:

DSSM [11]: The Deep Structured Semantic Model (DSSM) is an early appli-

cation of neural networks to web search. One of its key features is a word hashing

layer that converts all tokens into trigrams, which greatly reduces the size of the

vocabulary space to help handle misspellings and other noisy text input. In par-

allel, the dense hashed features from either the query or the document feed into a

multi-layer perceptron with a softmax on top to make the final relevance prediction.

I take the intermediate semantic representation of the query and document, just

before the softmax, as the query–document similarity vector.

SM-CNN [31]: The convolutional neural network (CNN) proposed by Sev-

eryn and Moschitti has been previously applied to question answering as well as
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tweet reranking. In both the query and document subnetworks, convolutional fea-

ture maps are applied to the input embedding matrix, followed by ReLU activation

and simple max-pooling, to arrive at a representation vector xq for the query and

xd for the document. Intermediate representations are concatenated into a single

vector at the join layer:

xjoin = [xTq ;xsim; xTd ; xTfeat] (3.15)

where xsim defines the bilinear similarity between xq and xd. The final component

consists of “extra features” xfeat derived from four word overlap measures between

the query and the document.

In the original SM-CNN model, the join vector feeds into a fully-connected

layer and softmax for final relevance prediction, but in my approach I use the join

vector xjoin as the query–document similarity vector.

Multi-Perspective CNN [30]: This approach was developed at roughly the

same time as the SM-CNN model and can be described as an ensemble of convo-

lutional neural networks. The “multi-perspective” idea refers to different types of

convolutional feature maps, pooling methods, and window sizes to capture semantic

similarity between textual inputs. Another key feature is a similarity measurement

layer to explore the interactions between the learned convolutional feature maps

at different levels of granularity. At the time the work was published, it achieved

state-of-the-art effectiveness on several semantic modeling tasks such as paraphrase

detection and question answering (although other models have improved upon it

since).
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As with the SM-CNN model, I take the joined representation just before the

fully-connected layer and softmax as the query–document similarity vector.

3.3.2 Temporal Modeling Component

On top of a sequence of temporally ordered query–document similarity vectors

(the output of the lexical modeling component), I layer a recurrent neural network to

capture the temporal clustering of relevant documents (see Figure 3.1). Compared

to kernel density estimation, I hypothesized that recurrent neural networks provide

a richer, more expressive modeling framework to capture temporal signals that can

yield more effective results.

I used a variant of recurrent neural networks, bidirectional LSTM (BiLSTM) [73],

which have been successfully applied to text similarity tasks [76,115]. One key fea-

ture of LSTMs is their ability to capture long-range dependencies, and a bidirec-

tional LSTM consists of two LSTMs that run in parallel in opposite directions: one

(forward LSTMf ) on the input sequence and the other (backward LSTMb) on the

reverse of the sequence. At time step t, the BiLSTM hidden state hbi
t is a con-

catenation of the hidden state hfor
t of LSTMf and the hidden state hback

t of LSTMb,

representing the neighboring contexts of input vt in the temporal sequence.

Given BiLSTM output hbi
t , the prediction output yt of my temporal ranking

model at time step t is obtained by passing the BiLSTM output through a fully-
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connected layer and softmax as follows:

gt = σ(Wm · hbi
t + bm) (3.16)

yt = softmax(W p · gt + bp) (3.17)

where the output yt indicates the relevance of the document at time step t. W ∗ and

b∗ are learned weight matrices and biases.

3.3.3 Model Training

Although this neural network architecture breaks down into two distinct com-

ponents, I train the entire model end-to-end in a two-stage manner, with stochastic

gradient descent to minimize negative log-likelihood loss of the entire model. In

each epoch, I first train the lexical modeling component independently, and then

use the results to generate inputs to the temporal modeling layer. The losses from

all documents are summed together to train the BiLSTM and the top layers, while

the underlying lexical component is held constant. The reason for this two-stage

approach is to restrict the search space during model optimization, since we have

limited labeled data for training.

At inference time, I first retrieve candidate documents from the collection using

a standard ranking function. These documents are then ordered chronologically and

fed into the model. The classification scores outputted by each step of the BiLSTM

(corresponding to the processing of that document) are used to resort the ranked

list, which I take as final output for evaluation. The evaluations of the above model
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is presented later, in Chapter 3.6.

3.4 Temporal Query Expansion with Pseudo Trends

A longstanding challenge in information retrieval is the issue of vocabulary

mismatch, where query terms are not present in relevant documents. This prob-

lem is especially severe in searching social media posts such as tweets due to their

short lengths and frequent use of informal language. Query expansion techniques,

especially those based on pseudo-relevance feedback, are effective in addressing this

problem. The main idea is to augment the user’s query with terms that appear in

the initial top k retrieved documents. In this section, we extend this idea to consider

the temporal dimension in the term expansion process.

In standard formulations of pseudo-relevance feedback, the timestamp of a

document is not considered in identifying expansion terms—yet we know from Fig-

ure 1.1 that relevant documents are bursty and usually occur in temporal clusters,

and that this signal should be incorporated into the relevance feedback model. The

main insight of this work is that term expansions should be biased to draw from

documents that occur in the bursty temporal clusters. This is formally captured

by a continuous hidden Markov model (cHMM), in which the temporal distribu-

tion of documents (not necessarily relevant) is represented by a sequence of hidden

states; the probability of generating a particular number of documents from each

state follows a Gaussian distribution. I present the derivation of an EM algorithm

to estimate the parameters of such a cHMM. Given a query, I first perform an ini-
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tial retrieval, estimate the parameters for a cHMM that best explains the observed

distribution of retrieved documents, and then use Viterbi decoding to compute the

most likely state sequence. In identifying term expansions, only documents from

bursty states are selected.

3.4.1 Temporal Modeling via Continuous Hidden Markov Model

Let’s begin with the standard definition of an HMM for modeling a discrete obser-

vation sequence O of length T with a fixed number of hidden states. An HMM is

parameterized by (A,B, π), where A is the transition matrix with Aij denoting the

transition probability from state i to state j at each time step, B is the emission

matrix with each Bi(O) denoting the probability of generating observation O from

state i, and π is the initial state distribution vector.

My approach is a variant of classic HMMs. In classic HMMs each observation

is a discrete symbol drawn from a finite alphabet, while in my case the observation

is an integer that denotes the document count at time interval t. That is, I assume

the probability of generating an observation count Ot in state i follows a Gaussian

distribution:

Bi(Ot) = P (Ot|qt = i) ∼ N(ui, σi)

The underlying states in the cHMM capture the burstiness of tweets during a par-

ticular time interval. A bursty state might correspond to a time when there are lots

of users postings tweets (for example, when something newsworthy is taking place).

A quiet state would correspond to times when nothing interesting is happening. In
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S3: N(u3, σ3)
S2: N(u2, σ2)

S1: N(u1, σ1)

Figure 3.2: An illustration of a three-state cHMM. Each circle represents a state
and arrows represent transitions. The Gaussians represent emissions (count of doc-
uments) from each state.

my current implementation, the cHMM uses three hidden states, but the model can

be extended to capture arbitrarily many gradations of burstiness. The state tran-

sitions in the cHMM model sequential dependencies in these states—for example,

a burst “dies down” when a newsworthy event passes. In each state, the mean u

controls the “intensity” of the burst (i.e., how many documents are generated), and

σ controls variations in different instances of the same state.

Figure 3.2 shows the three-state cHMM in our current implementation: circles

represent states and arrows represent transitions. The blue circle denotes a “bursty”

state as it has the largest mean, while the white circle can be interpreted as an

“inactive” state since it has the smallest mean; the gray circle might be interpreted

as an intermediate state.

Thus, the cHMM model is parameterized as λ = (A, u, σ, π). Given a sequence

of observations (document counts within a fixed time window), we can derive an EM

algorithm to estimate the parameters iteratively.
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In the E-step, the expectation of the complete-data log-likelihood logP (O, q|λ),

namely the Q function, is:

Q(λ, λ′) ∝
∑
q

logP (O, q|λ)P (O, q|λ′) (3.18)

where λ′ represents estimates of parameters in the previous iteration that are known

in the calculation and λ represents unknown parameters that we are trying to esti-

mate for maximizing the Q function.

From the independence assumptions of HMMs (namely, that the observation

Ot is only dependent on state qt; state qt is only dependent on the previous state

qt−1), we can compute the joint probability P (O, q|λ) as follows:

P (O, q|λ) = P (q|λ)P (O|q, λ)

= πq1

T∏
t=2

Aqt−1qt

T∏
t=1

Bqt(Ot)

(3.19)

Substituting P (O, q|λ) in Equation (3.19) into Equation (3.18):

Q(λ, λ′) =
∑
q

log πq1P (O, q|λ′)

+
∑
q

(
T∑
t=2

logAqt−1qt

)
P (O, q|λ′)

+
∑
q

(
T∑
t=1

logBqt(Ot)

)
P (O, q|λ′)

(3.20)
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We have broken the overall objective into three independent parts that we can

optimize individually in the M-step. Since the optimization shares similarities with

discrete HMMs (I recommend the tutorial by Bilmes [116] for more details), I skip

the detailed derivations here and provide the final solutions as follows:

πi =
P (O, q1 = i|λ′)

P (O|λ′)
(3.21)

Aij =

∑T
t=2 P (O, qt−1 = i, qt = j)∑T

t=2 P (O, qt−1 = i|λ′)
(3.22)

ui =

∑T
t=1Ot · P (O, qt = i|λ′)∑T
t=1 P (O, qt = i|λ′)

(3.23)

σ2
i =

∑T
t=1(Ot − ui)2 · P (O, qt = i|λ′)∑T

t=1 P (O, qt = i|λ′)
(3.24)

As with any EM algorithm, we iteratively update the parameters using above deriva-

tions until convergence. After arriving at the final parameter estimates λf (A, u, σ, π),

we can then use the Viterbi algorithm to find the sequence of states qopt that max-

imizes P (O|λf ). Expansion terms are then computed from this state sequence,

explained next.

3.4.2 Temporal Query Expansion

Given a query Q consisting of n query terms {t1, t2, ...tn}, I first use the above

continuous hidden Markov model to find the state sequence that best describes

the temporal distribution of the top k documents collected by an initial retrieval.

I consider the state with the largest mean as the bursty state, and only select
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documents whose timestamps fall in the bursty state for query expansion. For

convenience, I call these documents bursty documents. I then estimate a relevance

model P (w|R) [6] as follows:

P (w|R) =
∑
D∈C

P (D)P (w|D)
n∏
i=1

P (ti|D) (3.25)

where C is the set of bursty documents. I assume uniform priors P (D), so the

relevance model is simply a weighted average of the terms in the documents, where

the weights are the query likelihood scores.

Finally, just as in RM3 [6], I interpolate the estimated relevance model with

the original query model:

P ′(w|R) = α · P (w|R) + (1− α) · P (w|Q) (3.26)

The interpolation parameter α is set to 0.5 by default. Following common parameter

settings, I estimated the relevance models from k = 50 pseudo-relevant documents

and selected m = 20 feedback terms. The evaluation of cHMM model is presented

in Chapter 3.6.2.

3.5 Twitter Datasets

In this section, I describe the four Twitter test collections from the TREC

Microblog Tracks in 2011, 2012, 2013, and 2014, which are used across Chapter 3,

Chapter 4 and Chapter 5 for all the experiments. Note that some experiments
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only use a subset of the complete dataset. The statistics of the four datasets are

shown in Table 3.1. Each dataset contains about 50 queries. I use the open-source

implementations of tweet search provided by the TREC Microblog API2 to retrieve

up to 1000 tweets per query using query likelihood (QL) method. This helps us rule

out the effects of different preprocessing strategies in collection preparation (i.e.,

tokenization, stemming).

The underlying document collection for the TREC Microblog 2011 and 2012

topic sets is the Tweets2011 collection, which consists of an approximately 1% sam-

ple of tweets from January 23, 2011 to February 7, 2011 (inclusive), totaling ap-

proximately 16M tweets. The underlying collection for TREC Microblog 2013 and

2014 topic sets is the Tweets2013 collection, which consists of approximately 243M

tweets crawled from Twitter’s public sample stream between February 1 and March

31, 2013 (inclusive).

Following standard experimental procedures, the proposed models across Chap-

ter 3 to Chapter 5 are evaluated in a reranking task, using as input the top 1000

retrieved documents (tweets) from a bag-of-words retrieval QL ranking. I use the

Stanford Tokenizer tool3 to divide the retrieved tweets into token sequences to serve

as model input. Non-ASCII characters are removed and no stemming is performed.

The relevance judgments are made on a three-point scale (“not relevant”, “rele-

vant”, “highly relevant”), and I treat both higher grades as relevant, also per Ounis

et al. [117]. Retweets are removed in the final results, as the track guidelines consider

2https://github.com/lintool/twitter-tools
3https://nlp.stanford.edu/software/tokenizer.shtml
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Test Set 2011 2012 2013 2014

# of query topics 49 60 60 55
# of query-doc pairs 39,780 49,879 46,192 41,579
# of relevant docs 1,940 4,298 3,405 6,812
# of unique words 21649 27470 24,546 22099
# of unique OOV words 13067 17190 15724 14331
# of URLs 20351 25405 23100 20885
# of hashtags 6784 8019 7869 7346

Table 3.1: Statistics of the TREC Microblog Track datasets

them not relevant.

In addition, I count the number of words in each dataset that doesn’t appear

in the vocabulary of the well-known word2vec embeddings [92]. This can be con-

sidered as a measure of language informality for the datasets. As we can see, more

than 50% of words (OOV words) are not found in the word2vec vocabulary across all

datasets, suggesting tweets are much more informal than web documents and other

language tasks. I also collect the hashtags and URLs contained in tweets for future

reference. Since most URLs in tweet contents are masked and shortened, for ex-

ample, http://zdxabf, I recover the original URL addresses from redirection. The

recovered URLs are truncated to a maximum of 120 characters. The four datasets

used in this dissertation are publicly available.4

4https://github.com/Jeffyrao/TREC-Microblog-Datasets
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3.6 Evaluation

3.6.1 Evaluations of Neural Temporal Framework

In this section, I present the evaluation of my proposed neural framework in Chap-

ter 3.3 for integrating lexical and temporal evidences. The model is compared to

competitive lexical and temporal baselines. The lexical baselines include query

likelihood (QL), DSSM [11], SM-CNN [31], and MP-CNN [30]. The temporal base-

lines include the kernel density estimation method [16] with four weighting schemes:

uniform-based, score-based, rank-based, and oracle. The first three are based on

pseudo-feedback because they do not rely on user relevance judgments in the initial

retrieved hits, while the oracle method requires explicit relevance judgements. The

oracle, naturally, is not realistic, but is nevertheless useful to illustrate upper bound

effectiveness. The experiments are trained on TREC Microblog 2011 topic set, and

evaluated on the 2012 topic set in terms of mean average precision (MAP), precision

at 15, 30, and 100, denoted as P15, P30, P100, respectively.

3.6.1.1 Implementation Details

I used existing 300-dimensional GloVe [118] word embeddings to encode each

word, which was trained on 840 billion tokens and freely available. The vocabulary

size of the datasets is 90.3K, with around 37% words not found in the GloVe word

embeddings. Unknown words were randomly initialized with values uniformly sam-

pled from [−0.05, 0.05]. During training, I used stochastic gradient descent together
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with RMS-PROP to iteratively update the model. The output size of the BiLSTM

layer is 400 and the hidden layer size is 150. The learning rate was initially set

to 0.001, and then decreased by a factor of three when the development set loss

stopped decreasing for three epochs. The maximum number of training epochs was

25.

3.6.1.2 Experimental Results

Table 3.2 shows the experimental results, with each row representing an ex-

perimental condition (numbered for convenience). For each method, I performed

significance testing against the lexical baseline (QL) and the best-performing tem-

poral KDE model (rank-based). In addition, I tested the significance of differences

between each pair of lexical-only model vs. lexical + temporal model. In all cases,

I used Fisher’s two-sided, paired randomization test [1]. Superscripts indicate the

row indexes for which the metric difference is statistically significant (p < 0.05).

From the block in Table 3.2 labeled “Temporal Baselines”, we see that the KDE

approaches (with the exception of the oracle condition) yield limited improvements

over the QL baseline.5 Looking at the block of Table 3.2 labeled “Neural Ranking

Approaches”, we find that the SM-CNN model and DSSM do not appear to be as

effective as the multi-perspective CNN; in particular, the first two models actually

perform worse than the simple QL baseline.

In Table 3.2, under “Neural Ranking + Temporal Modeling”, I report results

5These results are consistent with my previous results reported in [33]; although those experi-
ments affirmed the overall effectiveness of the KDE techniques, results from individual configura-
tions (such as a particular train/test split) may not yield significant improvements.
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ID Method P15 P30 P100 MAP
1 Query Likelihood (QL) [52] 0.381 0.329 0.234 0.200

Temporal Baselines
2

KDE [16]

(uniform) 0.366 0.326 0.243 0.203
3 (score-based) 0.383 0.334 0.244 0.203
4 (rank-based) 0.387 0.337 0.244 0.202
5 (oracle) 0.4091,4 0.3831,4 0.2621,4 0.2281,4

Neural Embedding Approaches
6 L2R + Embedding 0.358 0.323 0.249 0.2191,4

7 SM-CNN [31] 0.203 0.188 0.170 0.116
8 DSSM [11] 0.187 0.168 0.153 0.102
9 Multi-Perspective CNN [30] 0.4011 0.3561 0.2521 0.197

Neural Embedding + Temporal Ranking
10 L2R + Embedding + Temporal 0.337 0.307 0.238 0.2111,4

11 SM-CNN [31] + Temporal 0.222 0.196 0.169 0.116
12 Multi-Perspective CNN [30] + Temporal 0.4181,4,9 0.3661,4 0.2571,4,9 0.2031,9

Table 3.2: Results from TREC Microblog 2011/12 topic sets. The TREC 2011
topic set was used to train the models, and 2012 topic set was used for evaluation.
Superscripts indicate the row indexes from which the metric difference is statistically
significant (p < 0.05) using Fisher’s two-sided, paired randomization test [1].

from combining the SM-CNN model and the multi-perspective CNN with the BiL-

STM temporal model. In the first case, the improvement is minor over the SM-CNN

model alone, but with the multi-perspective CNN, the addition of a temporal layer

yields significant improvements over the multi-perspective CNN alone (condition

8) and also rank-based KDE (condition 4). It’s also worth noting that the multi-

perspective CNN + BiLSTM model approaches the effectiveness of the oracle KDE

condition (and in the case of P15, exceeds it, albeit not significantly). This sug-

gests that neural networks offer an expressive framework for integrating lexical and

temporal signals, potentially beyond what is available to non-parametric density

estimation techniques alone, even with oracle input.
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Figure 3.3: Per-topic improvement on MAP metric of the temporal ranking model
vs. the multi-perspective CNN model.

Label QL Score MP-CNN Pred Temporal Pred Tweet Content

R 5.14 0.03 0.16
immigration probe of chipotle widens (reuters):
reuters -
upscale burrito chain chipotl @url source : yahoo
news

R 5.14 0.10 0.34
now they are messing with chipotle i hate the gop mt
@breakingnews:
chipotle told to expect new immigration inspections

I 4.46 0.01 0.01 about to get my chipotle #siceeee

I 5.29 0.01 0.04
wowtip raid rx: delivering and receiving healer
feedback:
every week raid rx will help you quarterback your he
@url

R 5.14 0.05 0.19
chipotle faces ice inspections in two more states
(reuters):
reuters - chipotle mexican grill inc has re @url

I 4.46 0.00 0.00 chipotle then home

Table 3.3: Relevance scores computed by QL method, the multi-perspective CNN
and its temporal variant for sample tweets of query MB080 “chipotle raid”. R
stands for relevant and I stands for irrelevant. The sample tweets are ordered by
their posted timestamps.

3.6.1.3 Error Analysis

To further gain insights of how the temporal modeling helps, I drew a fig-

ure (Figure 3.3) showing per-topic improvements on metric MAP of my temporal

method versus its base model (the multi-perspective model). From the figure, we

can see the temporal ranking model wins against its base model in the majority

of topics. Except topic 86 and 89, all other bad-performing topics have very few

degradation in performance.

To understand the inner workings of the temporal model, I selected some
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Label QL score MP-CNN Pred Temporal Pred Tweet Content

R 13.6 0.46 0.65
mp calls for change in the law after ’intrusive’
coverage of joanna
yeates case @url #bristol

I 3.28 0.02 0.15 #nw murder was the case - snoop dogg (mtv jams)

I 3.28 0.00 0.02
@wandfc can i get a rt for my 41st birthday from my
favourite axe murderer

I 3.28 0.17 0.55
”death proof” campy murder retro styli tarintino film
rose
mcgowen five stars dig in

I 3.28 0.15 0.48 the pain is brutally murdering me

I 3.28 0.01 0.06
sisters and brothers in solidarity - memorial march
for missing
and murdered native women @url

Table 3.4: Relevance scores computed by the QL method, the multi-perspective
CNN and its temporal variant for sample tweets of query MB086 “joanna yeates
murder”. R stands for relevant and I stands for irrelevant.

sample tweets for the best-performing topic MB080 “chipotle raid” and the worst-

performing topic MB086 “joanna yeates murder”. In Table 3.3, I show 6 sample

tweets for topic MB080 “chipotle raid” and the prediction scores generated by the

QL method, the base multi-perspective CNN, and the temporal model. These tweets

are ordered by their posted timestamps. Basically, topic MB080 is looking for tweets

discussing about the news that the Mexican chain company, Chipotle, fired hundreds

of employees because of an immigration raid. First, we observe that the basic multi-

perspective CNN model is able to give relatively higher scores to the relevant tweets,

reflecting a more reliable ranked list compared to the QL baseline. In comparison,

the temporal model is able to exploit sequential dependences between neighboring

tweets to better discriminate those relevant and irrelevant tweets by having a much

larger divergence between the prediction scores of different classes.

In contrast, from Table 3.4, we can see the predictions of the basic multi-

perspective CNN model is not that accurate, with the fourth and fifth irrelevant

tweets both assigned high similarity scores. But taking a closer look at the contents
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of the fourth and fifth tweets, I find the main reason of their high similarity scores

is because they contain many semantic-related terms to the query term “murder”,

like “death”, “proof” and “pain”. However, without explicit judgements, the tem-

poral ranking model is confused by those high scores generated by its base model,

eventually boosting the similarity scores of irrelevant documents and hurting ef-

fectiveness. This confirms my previous finding that the temporal ranking model

requires a high-quality neural model for generating robust document embeddings.

3.6.2 Evaluation of Temporal Query Expansion

In this section, I evaluate the cHMM model proposed in Chapter 3.4 on TREC

2011 and 2012 topic sets. The experimental procedure is as follows: I first performed

initial retrieval using query-likelihood to gather ranked lists of tweets from the cor-

pus. I then trained the cHMM model on the top 50 tweets for each topic, with three

states and the number of time intervals T set to 30. After the cHMM parameters

have been estimated via EM, I apply Viterbi decoding to extract the most likely

state sequence, which is then used for temporal query expansion. Note that this

experimental procedure does not require a training/test split of the topics.

The cHMM temporal pseudo-feedback technique is compared against the RM3

pseudo-feedback technique [6,119] as a baseline. I also implemented the KDE variant

of RM3 [16,33], which includes four different ways to estimate feedback parameters:

uniform, score-based, rank-based, and oracle. The first three are based on pseudo-

feedback and they do not rely on user relevance judgments in the initial retrieved hits
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Method P5 P15 P30 MAP
QL 0.465 0.411 0.354 0.268
RM3 0.500 0.433 0.378 0.302
RM3 + KDE (score) 0.494 0.436 0.379 0.300
RM3 + KDE (rank) 0.490 0.425 0.376 0.292
RM3 + KDE (oracle) 0.548• 0.492• 0.422• 0.319•

cHMM 0.528• 0.444• 0.391◦ 0.310◦

Table 3.5: Experimental results comparing the effectiveness of cHMMs against RM3
and KDE variants.

(which is the same as with RM3 and cHMM), while the oracle method demonstrates

the upper bound as it requires explicit relevance judgments. Here, I include results

for the score-based, rank-based, and oracle conditions. I follow the same parameter

tuning procedure in Rao et al. [33], where the parameters were learned using test

data from TREC 2013 and 2014 topics. For completeness, I show the results of

the initial query-likelihood (QL) retrieval without any feedback (this, of course, is

a weak condition to compare against).

Experimental results are reported in Table 3.5. The symbols ◦ and • indi-

cate that differences with respect to the RM3 baseline are statistically significant at

p < 0.10 and p < 0.05 based on Fisher’s two-sided, paired randomization test [120],

respectively. We observe that QL is relatively ineffective as all other models outper-

form it by a large margin (all differences are statistically significant at p < 0.01).

This replicates the robust finding that query expansion is effective for searching

tweets.

Consistent with the findings in Rao et al. [33], the KDE (score) and KDE

(rank) approaches do not improve upon the effectiveness of RM3 by itself. How-

ever, the cHMM approach significantly outperforms RM3, confirming my initial
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intuitions—we obtain higher-quality expansion terms from bursty documents, and

that bursty states can be captured with my cHMM. The results of the KDE (ora-

cle) condition are not surprising, since it exploits users’ explicit relevance feedback.

This condition can be viewed as an upper bound on how much temporal signal

can be extracted to improve relevance ranking (at least with this broad class of

techniques)—and results show that my cHMM achieves effectiveness that is pretty

close to this upper bound.

As a specific example of how the cHMM helps, I took a closer look at topic 14

“release of The Rite”, which achieves an improvement of 0.22 (MAP) and 0.57 (P30)

against the RM3 baseline. I visualized the estimated cHMM state sequence from

day 6 to day 1 in Figure 3.4. As there are too many states to show if we follow the

setting of T = 30 in the experiments above, I reduced the number of states to one per

day for illustrative purposes. The blue circle denotes a bursty state, the gray circles

denote an intermediate (less bursty) state, and the white circle denotes an inactive

state. As we can see, the bursty state reflects the cluster of documents at day 3 in

the distribution of relevant documents (topic 14 in Figure 1.1). From day 6 to day 1,

the inferred states reflect the density of the documents along the timeline. Overall,

this example suggests that the cHMM is able to capture sequential dependencies in

the temporal distribution of relevance, which is essential for identifying those bursty

and expressive terms for expansion.
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6 5 4 3 2 1

Figure 3.4: State evolution of topic 14 “release of The Rite” from day 6 to day 1
(each circle = one day). The blue circle represents a bursty state, the gray circles
represent an intermediate state, and the white circle represents an inactive state.

3.7 Conclusion

To conclude, I describe two ways to model the pseudo trend for improving rel-

evance ranking. I first introduce a unified neural framework to model the temporal

distribution of relevant documents for reranking (in Chapter 3.3), Next I present a

continuous hidden Markov model for selecting the more informative terms in bursty

states for query expansion (in Chapter 3.4). Extensive experiments on TREC Mi-

croblog collections demonstrate the state-of-the-art effectivenesses of my approaches.

Further ablation studies and error analysis show the inner workings of my temporal

modeling approaches.
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Chapter 4: Temporal Modeling of Query Trends for Tweet Search

4.1 Introduction

In the previous chapter, I introduce pseudo trend techniques that estimate the

distribution of relevant documents using distribution of document timestamps from

the results of an initial query [16]. In this chapter, I take a different approach to

estimate the distribution of relevant documents: instead of relying on the results of

an initial query, I attempt to exploit temporal signals embedded in the distribution

of the query terms themselves. I call these query trends, which are generalizations of

collection term statistics (of query unigrams and bigrams) in the temporal dimen-

sion. Specifically, we can keep track of the number of occurrences of query terms

across a moving window over the document collection.

Consider an example that illustrates this intuition: the distribution of relevant

documents (i.e., from human judgments) for topic MB127 (“hagel nomination fili-

bustered”) from the TREC 2013 Microblog Track is shown on the top in Figure 4.1.

The x axis denotes a timeline, with units in days anchored at the query time on

the right edge. Of course, this distribution is not known at query time—it is the

target of our prediction. The remaining rows in Figure 4.1 show query trends, the

distribution of query terms in the collection across time, for the unigrams “filibus-
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8/3/2017 Scatterplot

http://www.cs.umd.edu/~jinfeng/demos/tweet_trend_2013.html 1/1

05101520253035
distribution of relevant documents: hagel nomination filibustered

05101520253035
unigram trend: filibustered

05101520253035
unigram trend: hagel

05101520253035
unigram trend: nomination

05101520253035
bigram trend: hagel nomination

05101520253035
bigram trend: nomination filibustered

Figure 4.1: The temporal distribution of relevant documents (top row, in red) and
unigram/bigram query trends (remaining rows, in blue) for MB127 (“hagel nomina-
tion filibustered”) from the TREC 2013 Microblog Track. Informally, the problem
can be characterized as using the blue distributions to predict the red distribution.

tered”, “hagel”, “nomination”, and the bigram “hagel nomination”. Informally, the

problem can be characterized as using query trends to predict the distribution of

relevant documents (i.e., the top row in Figure 4.1).

From this example, it is apparent that there are correlations between query

trends and the distribution of relevant documents. Furthermore, a key advantage of

my approach over previous pseudo trend methods is that it eliminates the need for

an initial retrieval, since temporal term statistics can be preprocessed and stored

offline. This means query trend approaches can be substantially faster than pseudo

trend methods. However, the estimation of query trends requires fast access to the

term statistics within a particular time window, what I reframe as term statistics

time series. Such data could be huge in a large document collection—essentially

the cross product of the vocabulary and the number of time intervals—but are also
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sparse, which makes them amenable to compression. Naturally, we would like to

achieve as much compression as possible to minimize the storage requirements, but

this needs to be balanced with decoding latencies, as the two desiderata are often

intension.1

I first explore different algorithms for compressing and decoding term statistics

time series. I begin with a number of well-known integer compression techniques

and propose a novel approach based on Huffman codes over blocks of term counts.

My Huffman-based techniques are able to substantially reduce storage requirements

compared to state-of-the-art compression techniques while still maintaining good

decoding performance. This provides us an opportunity to model query trends in a

real time manner for estimating the distribution of relevant documents, which can

be substantially faster than previous approaches that require an initial retrieval.

Then I explore two different approaches to exploiting query trends:

• A linear ranking model that combines features based on the temporal collection

statistics of query unigrams and bigrams, their entropies, other related signals.

• A regression-based method that attempts to directly predict the distribution of

relevant documents from unigram and bigram query trends.

These two approaches are further combined in an ensemble model, which addi-

tionally includes features derived from previous pseudo trend work based on kernel

density estimation.

My contributions can be summarized as below:

1We set aside compression speed since we are working with retrospective collections.
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• I perform an empirical comparison of compression techniques for term statistics

time series. I begin with a number of well-known integer compression techniques

and build toward a novel approach based on Huffman codes over blocks of term

counts. I show that Huffman-based techniques are able to substantially reduce

storage requirements compared to state-of-the-art compression techniques while

still maintaining good decoding performance. My contribution enables retrieval

systems to load large amounts of time series data into memory and access term

statistics with low latency.

• I explore the temporal collection statistics of query terms (what I call query

trends) for temporal ranking. To my knowledge, my focus on such query term

statistics is novel. Experimental evaluations on standard tweet test collections

show that my proposed methods are significantly more effective than competitive

baselines. Furthermore, detailed studies of different feature combinations show the

extent to which different types of temporal signals impact retrieval effectiveness.

This chapter is organized as follows: I first introduce my compression techniques

for term statistics time series and their evaluations in Chapter 4.2, and present my

approaches on temporal modeling of query trends in Chapter 4.3, followed by the

experiments in Chapter 4.4. I conclude this chapter in Chapter 4.5.

4.2 Compressing and Decoding Term Statistics Time Series

Unlike the pseudo trend techniques that requires an initial retrieval stage –

after a list of documents has been returned and gathered for a particular query, my
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approaches for estimating the query trends require real-time access to the temporal

distribution of query term statistics, what I reframe as term statistics time series.

However, such data could be huge in a large document collection, which makes them

amenable to compression.

4.2.1 Compression Methods

As a start, I adopt the standard definition of a time series as a finite sequence

of n real numbers, typically generated by some underlying process for a duration

of n time units: x = {x0, x1, x2, ..., xn}, where each xn corresponds to the value of

some attribute at a point in time. In my case, these time series data correspond to

counts on a stream of timestamped documents (tweets in this case) at fixed intervals

(e.g., hourly). To be precise, these term statistics represent collection frequencies of

unigrams and bigrams from a “temporal slice” of the document collection consisting

of documents whose timestamps fall within the interval.

In this work, I assume that counts are aggregated at five minute intervals, so

each unigram or bigram is associated with 24×60/5 = 288 values per day. Previous

work [121] suggests that smaller windows are not necessary for most applications,

and coarser-grained statistics can always be derived via aggregation.

I compared five basic integer compression techniques: variable-byte encod-

ing (VB) [122], Simple16 [123], PForDelta (P4D) [124], discrete wavelet transform

(DWT) with Haar wavelets, and variants of Huffman codes [125]. The first three are

commonly used in IR applications, and therefore I simply refer readers to previous
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papers for more details. I discuss the last two in more detail.

Discrete Wavelet Transform (DWT): The discrete wavelet transform enables

time-frequency localization to capture both frequency information and when (in

time) those frequencies are observed. In this work, I use Haar wavelets. To illus-

trate how DWT with Haar wavelets work, let’s start with a simple example. Suppose

we have a time series with four values: X = {7, 9, 5, 3}. We first perform pairwise

averaging to obtain a lower resolution signal with the values: {8, 4}. The first value

is obtained by averaging {7, 9} and the second by averaging {5, 3}. To account

for information lost in the averaging, we store detail coefficients equal to pairwise

differences of {7, 9} and {5, 3}, divided by two. This yields {−1, 1}, which allows

us to reconstruct the original signal perfectly. Assuming a signal with 2n values,

we can recursively apply this transformation until we end up with an average of all

values. The final representation of the signal is the final average and all the detail

coefficients. This transformation potentially yields a more compact representation

since the detail coefficients are often smaller than the original values. I further com-

press the coefficients using either variable-byte encoding or PForDelta. Since the

coefficients may be negative, we need to store the signs (in a separate bit array).

Huffman Coding: A nice property of Huffman coding [125] is that it can find

the optimal prefix code for each symbol when the frequency information of all sym-

bols are given. In my case, given a list of counts, we first partition the list into

several blocks, with each block consisting of eight consecutive integers. After we
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calculate the frequency counts of all blocks, we are able to construct a Huffman

tree over the blocks and obtain a code for each block. We then concatenate the

binary Huffman codes of all blocks and convert this long binary representation into

a sequence of 32-bit integers. Finally, we can apply any compression method on top

of these integer sequences. To decode, we first decompress the integer array into

its binary representation. Then, this binary code is checked bit by bit to determine

the boundaries of the original Huffman codes. Once the boundary positions are ob-

tained, we can recover the original integer counts by looking up the Huffman code

mapping. The decoding time is linear with respect to the length of Huffman codes

after concatenation.

Beyond integer compression techniques, we can exploit the sparseness of unigram

counts to reduce storage for bigram counts. There is no need to store the bigram

count if any unigram of that bigram has a count of zero at that specific interval. For

example, suppose we have count arrays for unigram A, B and bigram AB below: A:

00300523, B: 45200103, and AB: 00100002. In this case, we only need to store the

3rd, 6th, and 8th counts for bigram AB (that is, 102), while the other counts can

be dropped since at least one of its unigrams has count zero in those intervals. To

keep track of these positions we allocate a bit vector 288 bits long (per day) and

store this bit vector alongside the compressed data. This truncation technique saves

space but at the cost of an additional step during decoding. When recovering the

bigram counts, we need to consult the bit vector, which is used to pad zeros in the

truncated count array accordingly.
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In terms of physical storage, we maintain a global array by concatenating the

compressed representations for all terms across all days. To access the compressed

array for a term on a specific day, we need its offset and length in the global array.

Thus, we keep a separate table of the mapping from (term id, day) to this informa-

tion. Although in the experiments I assume that all data are held in main memory,

my approach can be easily extended to disk-based storage.

As an alternative, instead of placing data for all unigrams and bigrams for

all days together, we could partition the global array into several shards with each

shard containing term statistics for a particular day. The advantage of this design

is apparent: we can select which data to load into memory when the global array is

larger than the amount of memory available.

4.2.2 Evaluation of Compression Methods

I evaluate the above compression techniques in terms of two metrics: size

of the compressed representation and decoding latency. For the decoding latency

experiments, I iterate over all unigrams or bigrams in the vocabulary, over all days,

and report the average time it takes to decode counts for a single day (i.e., 288

integers). All my algorithms were implemented in Java and available open source.2

Experiments were conducted on a server with dual Intel Xeon 4-core processors

(E5620 2.4 GHz) and 128 GB RAM.

My algorithms were evaluated over the Tweets2011 and Tweets2013 collec-

tions, described in Chapter 3.5. All non-ASCII characters were removed in the

2https://github.com/Jeffyrao/time-series-compression
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preprocessing phase. I set a threshold (by default, greater than one per day) to

filter out all low frequency terms (including unigrams and bigrams). I extracted

a total of 0.7M unigrams and 7.3M bigrams from the Tweets2011 collection; 2.3M

unigrams and 23.1M bigrams from the Tweets2013 collection.

Results are shown in Table 4.1. Each row denotes a compression method.

The first row “Raw” is the collection without any compression (i.e., each count is

represented by a 32-bit integer). The row “VB” denotes variable-byte encoding; row

“P4D” denotes PForDelta. Next comes the wavelet and Huffman-based techniques.

The last row “Optimal” shows the optimal storage space with the lowest entropy

to represent all Huffman blocks. Given the frequency information of all blocks,

the optimal space can be computed by summing over the entropy bits consumed by

each block (which is also the minimum bits to represent a block). The column “size”

represents the compressed size of all data (in base two). To make comparisons fair,

instead of comparing with the (uncompressed) raw data, I compared each approach

against PForDelta, which is considered state of the art in information retrieval

for coding sequences such as postings lists [124]. The column “percentage” shows

relative size differences with respect to PForDelta. The column “time” denotes the

decompression time for each count array (the integer list for one term in one day).

Results show that both Simple16 and PForDelta are effective in compressing

the data. Simple16 achieves better compression, but for unigrams is slightly slower

to decode. Variable-byte encoding, on the other hand, does not work particularly

well: the reason is that the count arrays are aggregated over a relative small temporal

window (five minutes) and therefore term counts are generally small. This enables
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Tweets2011 Unigrams Bigrams
Method size (MB) percentage time (µs) size (MB) percentage time (µs)

Raw 4760 12800
VB 1200 +442% 1.9 3200 +318% 1.1

Simple16 200 −9.50% 1.1 653 −14.6% 0.7
P4D 221 - 1.0 764 - 1.2

Wavelet+VB 1300 +488% 2.3 3700 +384% 2.3
Wavelet+P4D 352 +59.3% 2.7 978 +28.0% 2.3

Huffman 65 −70.6% 7.8 396 −48.2% 2.9
Huffman+VB 46 −79.2% 8 180 −76.4% 3.2

Optimal 32 −85.5% - 108 −85.9% -
Tweets2013 Unigrams Bigrams

Method size (GB) percentage time (µs) size (GB) percentage time (µs)
Raw 52.5 171.8
VB 13.1 +446% 3.8 43.0 +347% 1.3

Simple16 2.2 −8.33% 2.2 8.3 −13.5% 0.8
P4D 2.4 - 1.9 9.6 - 1.2

Wavelet+VB 14.8 +517% 6.4 49.0 +410% 2.6
Wavelet+P4D 3.8 +58.3% 4.7 12.9 +34.4% 6.2

Huffman 0.71 −70.4% 14.7 4.9 −49.0% 6.2
Huffman+VB 0.48 −80.0% 15.6 3.0 −68.7% 6.3

Optimal 0.33 −86.2% - 0.95 −90.1% -

Table 4.1: Results on the Tweets2011 (top) and Tweets2013 (bottom) collections.

Simple16 and PForDelta to represent the values using very few bits. In contrast,

VB cannot represent an integer using fewer than eight bits. I also noticed that the

Wavelet+VB and Wavelet+P4D techniques require more space than just VB and

PForDelta alone, which suggests that the wavelet transform is not effective. I believe

this increase comes from: (1) DWT requires an additional array to store the sign

bits of the coefficients, and (2) since the original counts are already sparse, DWT

does not additionally help.

The decoding times for VB, Simple16, PForDelta, and the wavelet methods

are all quite small, and it is interesting to note that decoding bigrams can be actu-

ally faster than decoding unigrams, which suggests that my masking mechanism is
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effective in reducing the length of the bigram count arrays.

Experiments show that we are able to achieve substantial compression with

the Huffman-based techniques, up to 80% reduction over PForDelta. Overall, the

findings hold consistently over both the Tweets2011 and Tweets2013 collections.

In fact, Huffman+VB is pretty close to the entropy lower bound. Entropy coding

techniques like Huffman coding prefer highly non-uniform frequency distributions,

and thus are perfectly suited to the time series data. Although my Huffman+VB

technique also increases decoding time, I believe that this tradeoff is worthwhile,

but of course, this is application dependent. I did not try to combine Huffman

coding with Simple16 or PForDelta as I found that the integer lists transformed

from Huffman codes were generally composed of large values, which are not suitable

for word-aligned compression methods.

4.3 Temporal Modeling of Query Trends

By now we have introduced how to compress and access term statistics time

series in an efficient manner, which enables us to explore modeling the query trends

for improving the ranking effectiveness. In the following, I first introduce a fea-

ture engineering method to model query trends in Chapter 4.3.1, then I present

a regression way to estimate the distribution of documents directly from all query

trends in Chapter 4.3.2. Finally, I combine query trend with pseudo trend features

in Chapter 4.3.3.
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4.3.1 Feature Engineering on Query Trends

Intuitively, we would expect to find more relevant documents in temporal in-

tervals where the query terms are bursty. I illustrate this in Figure 4.1 for topic

MB127 (“hagel nomination filibustered”) from the TREC 2013 Microblog Track, as

described in the introduction. The top row shows the actual distribution of rele-

vant documents, which is the target of our prediction and of course not known at

query time. The remaining rows show the query trends of the unigrams “filibus-

tered”, “hagel”, “nomination”, and the bigram “hagel nomination”.3 As we might

expect, there are correspondences between peaks in the query trends and the actual

distribution of relevant documents—for example, the few days when the unigram

“filibustered” occurs most frequently are also when most of the relevant documents

are clustered.

Of course, not all query trends are created equal. In the example in Figure 4.1,

we see that the distribution of the unigram “nomination” is less predictive of the

distribution of relevant documents. Overall, we find that less bursty terms are less

useful, a notion we can formally capture by computing the entropy of the distribu-

tion. Given the counts of a particular unigram or bigram t = {c1, c2, ..., cn} across

various time intervals (e.g., days), its entropy can be computed as follows:

Entropy(t) = −
∑
i

ci
C

log
ci
C

(4.1)

3The other query bigram “nomination filibustered” is ignored in this analysis because it does
not occur with sufficient frequency (based on a simple threshold).
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where C =
∑

i ci. Lower entropy indicates a less uniform distribution and thus more

bursty behavior.

From the query trends we can derive a family of features for a learning-to-rank

model. There is, however, one additional complication we need to address: queries

vary in length, which means that different queries have different numbers of unigram

and bigram query trends. This is problematic since the linear feature-based model

we use assumes a fixed number of features. I address this issue in a more principled

manner in the next section, but here I introduce features based on the unigram

and bigram with the lowest entropy (thus, the largest burstiness). I call these the

representative unigram and bigram query trend, respectively.

From the basic concepts introduced above, I propose the following features:

• The relative entropy of the representative unigram. The relative entropy reflects

the burstiness of a unigram query trend, computed as the absolute difference be-

tween the unigram entropy and the maximum entropy. The maximum entropy is

computed by assuming a uniform distribution over term counts. Note that queries

can have different timespans (because each is associated with a different query

time), and thus the maximum entropy is query-dependent; computing relative

entropy normalizes for the effects of different query timespans.

• The relative entropy of the representative bigram. This feature is computed in

exactly the same manner as described above, except on bigram query trends.

• Estimated density at the document’s timestamp from the query trend of the

representative unigram. This feature is document-dependent. First, I perform
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kernel density estimation over the representative query unigram. Then, for the

particular document that we are scoring, we compute the estimated density at

the document’s timestamp.

• Estimated density at the document’s timestamp from the query trend of the

representative bigram. This is similar to above, except with bigrams.

In Chapter 4.3.3, I detail how these features are integrated into the final ranking

model.

4.3.2 Regression on Query Trends

The above feature engineering approach tries to predict the distribution of

relevant documents via a single representative unigram or bigram query trend. An

alternative is to integrate evidence from all unigram and bigram query trends. Such

an approach, however, can be a double-edged sword. On the one hand, I observe

that for many topics, the distribution of relevant documents has many peaks. In

these cases, it is unlikely that a single unigram or bigram query trend is sufficient

to reconstruct the reference distribution. Such cases would seemingly benefit from

integrating multiple sources of evidence to overcome the limited signal from any

individual query trend. On the other hand, I see that some query trends have low

or even negative correlations with the actual distribution of relevant documents

(e.g., query terms that aren’t important to the information need). In these cases,

the query trends merely introduce noise into the prediction. How to balance these

two factors is a question I explore.
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The basic idea behind my regression-based method is to predict the actual

query distribution by integrating all unigram and bigram query trends. When a

query arrives, we can apply the entropy computations and kernel density estimations

on all query terms. Suppose we have computed an entropy of et and a kernel density

function of ft for each term t. We can then attempt to fit the actual density of

relevant documents Y (which is obtained by KDE [16] on the distribution of relevant

documents) as follows:

Y ≈
∑
t

wtft (4.2)

where weight wt is a function of entropy et and our goal is to learn this mapping

function.

Note that approximating a continuous function from multiple kernel density

functions is difficult, so instead I sample the distributions at fixed intervals. Now

this model transforms into a non-linear regression problem. Given the unigram

entropies Eu, bigram entropies Eb, unigram densities U at the sample points, and

bigram densities B at the sample points, our task is to predict the densities Y at

the same points. For more details about symbols used in this section, please refer

to Table 4.2.

Two questions need to be answered in this non-linear regression problem. First,

how to determine the importance of each term in contributing to the estimated den-

sity? Based on my observations, I find that terms with larger normalized entropies,

i.e., a larger difference between its absolute entropy and the entropy of a uniform

distribution, are more likely to reflect the true distribution of relevant documents.
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Description
Nq number of queries
Np number of sample points per query
N Nq ·Np, number of sample points across all queries
Nu max. number of unigrams per query (default 10)
Nb max. number of bigrams per query (default 10)
Yi Np × 1, densities computed from relevant docs for query i
Y N × 1, concatenation of densities (Y1, ..., Yi, ..., YNq)
U N ×Nu, densities computed from unigram trends
B N ×Nb, densities computed from bigram trends
Eu Nq ×Nu, normalized relative unigram entropies
Eb Nq ×Nb, normalized relative bigram entropies
R Nq × 1, ratio of max unigram to bigram entropy
wui Nu × 1, weight vector for unigrams of query i
wbi Nb × 1, weight vector for bigrams of query i

Table 4.2: Notation Table.

Therefore, I formulate the mapping from entropy to weights via an exponential in-

creasing function, wt = exp(θ · et) − 1, where et is the normalized entropy of term

t with its value ranging from zero to one. A term with zero normalized entropy

would have zero weight, and thus can be ignored. The parameter θ controls the

exponential rate. I use α for unigrams and β for bigrams as θ below.

The second question is how to differentiate contributions of unigrams from

those of bigrams. For some queries, unigram query trends are more predictive, while

for others, bigram trends are more predictive. How to evaluate their contributions

for different queries is one key aspect of my model. To this end, for each query,

I assign a weight ui ∈ [0, 1] to denote its unigram contribution; the corresponding

bigram weight would be 1 − ui. I link the normalized unigram weight ui to the

entropy ratio Ri (which is the ratio of the maximum normalized unigram to bigram

entropy for query i) by observing correlations between these two factors in training
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data. This mapping is normalized by a logistic function:

ui = logistic(Ri, γ) =
1

1 + exp(−γRi)
(4.3)

where

Ri =
maxuE

u
i

maxbEb
i

− 1 (4.4)

and γ is a parameter to be estimated.

Intuitively, Ri greater than zero implies that the maximum normalized uni-

gram entropy is larger than the maximum normalized bigram entropy. In this case,

the logistic function would assign a unigram weight ui > 0.5, and so unigrams

would contribute more to the density estimate than bigrams. Finally, I desire that

the integrated densities approximate the actual query density Y for each query i:

Yi ≈ uiUiw
u
i + (1− ui)Biw

b
i (4.5)

where wui and wbi are weight vectors of unigrams and bigrams of query i, respec-

tively. Overall, I sum up the square loss between ground truth densities Yi and the

estimated densities Ŷi over all queries, plus some regularization terms. The final loss

function L is formulated as follows:

L =

Nq∑
i=1

‖Yi − (uiUi(e
αEu

i − 1)T + (1− ui)Bi(e
βEb

i − 1)T )‖2

+ λ(α2 + β2 + γ2)

(4.6)
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where Ri and ui are defined above.

Note that this model has three parameters (α, β, and γ) to be estimated, which

are the weights of the entropy mapping function and the logistic function. Since

the loss L is differentiable with respect to the three parameters, we can optimize

the parameters using gradient-based methods. By constituting the logistic function

into the overall loss function L, the gradients with respect to the parameters are

computed as follows:

term = 2 ·
(
Yi − (uiUi(e

αEu
i − 1)T + (1− ui)Bi(e

βEb
i − 1)T )

)
∂L

∂α
= −

Nq∑
i=1

(
ui · termT · Ui · (Eu

i · eαE
u
i )T
)

+ 2λα

∂L

∂β
= −

Nq∑
i=1

(
(1− ui) · termT ·Bi · (Eb

i · eβE
b
i )T
)

+ 2λβ

∂L

∂γ
=

Nq∑
i=1

(
termT ·

(
−Ui · (eαE

u
i − 1)T +Bi · (eβE

b
i − 1)T

)
·Rilogistic(Ri, γ) · (1− logistic(Ri, γ))

)
+ 2λγ

After solving the objective, we learn two mappings: an exponential mapping from

entropy to term weight wt = exp(θe) − 1, and a logistic mapping from ratio to

unigram weight u = logistic(R, γ). We are then able to estimate densities for queries

in the test data:

Ŷi = uiUiw
u
i + (1− ui)Biw

b
i (4.7)

Finally, the estimated density Ŷi serves as a feature in the final evidence combination
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Description
1 QL score

Density estimate from:
2 KDE over initial retrieved docs (uniform)
3 KDE over initial retrieved docs (score-based)
4 KDE over initial retrieved docs (rank-based)
5 KDE over relevant docs (oracle)

Chapter 4.3.1
6 Relative entropy of representative unigram
7 Relative entropy of representative bigram

Density estimate from:
8 KDE of representative unigram distribution
9 KDE of representative bigram distribution

Chapter 4.3.2
10 Density estimate from query trend regression model

Table 4.3: Summary of all features.

approach (more details below).

4.3.3 Pull Everything Together

To recap, I have introduced three families of features for modeling temporal

evidence: KDE applied to initial retrieved documents [16] (Chapter 3.2), features

derived from query trends (Chapter 4.3.1), and density estimates from a query trend

regression model (Chapter 4.3.2). In total, we have ten features, including query-

likelihood for capturing content relevance, which are summarized in Table 4.3.

Then I integrate all these features in a linear feature-based ranking model [113].

The general form of such a model, extended from Eq. (3.8), is as follows:

Sd =
∑
i

αi · Fi(d, q) s.t.
∑
i

αi = 1. (4.8)

Naturally, we would like to understand the relative contributions of each type of
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Method Features
QL 1
IRDu 1, 2
IRDs 1, 3
IRDr 1, 4
QT 1, 6–9
QT + IRDr 1, 4, 6–9
Reg 1, 10
Reg + IRDr 1, 4, 10
Oracle 1, 5

Table 4.4: Summary of different feature combinations.

feature, but it does not make sense to exhaustively explore all possible combina-

tions. Thus, I take the middle road and explore a number of interesting feature set

combinations, summarized in Table 4.4:

• Different weighting schemes for KDE applied to the initial retrieved documents.

These are the same experimental conditions in Efron et al. [16] and my previ-

ous results [33]. For convenience, these models are referred to as IRDu (uniform

weights), IRDs (score-based weights), and IRDr (rank-based weights). My previ-

ous experiments [33] show that rank-based weights are the most effective overall,

and thus for subsequent configurations I only use rank-based weights.

• Query trend features as a group (QT) and query trend features combined with

KDE on the initial retrieved documents with rank-based weights (QT + IRDr).

• Query trend regression (Reg) and query trend regression combined with KDE on

the initial retrieved documents with rank-based weights (Reg + IRDr).

Note that use of the IRDr features requires an initial retrieval, and thus we lose the

efficiency advantage of feature combinations that use only query trends.
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4.4 Evaluation of Query Trend Methods

I evaluate the proposed methods on TREC Microblog 2013 and 2014 topic

sets (datasets are described in Chapter 3.5), which uses the Tweets2013 collection

as the underlying document corpus. In my experiments, I examined four different

ways of splitting the test collections into training and test sets:

• First, I trained on odd-numbered topics from the TREC 2013 and 2014 Microblog

Tracks (57 topics) and evaluated on even-numbered topics (58 topics).

• Second, I swapped the training/test splits: training on even-numbered topics and

testing on odd-numbered topics.

• Third, I performed four-fold cross validation across all topics.

• Finally, I performed a series of trials in which I randomly selected half the topics

for training and used the remaining for testing. Results across multiple trials are

aggregated.

I used coordinate ascent in RankLib4 to learn the parameters in Eq. (4.8), optimizing

and evaluating on the same metric.

Several baselines are used as points of comparison to my proposed methods.

Query likelihood (QL) [52] is used as a lexical baseline. Temporal baselines include:

• Li and Croft’s recency prior method [26].

• The moving window method of Dakka et al. [61].

4https://sourceforge.net/p/lemur/wiki/RankLib/
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• The kernel density estimation (KDE) methods of Efron et al. [16] with uniform

weights (IRDu), score-based weights (IRDs), and rank-based weights (IRDr).

In addition, I also include the KDE oracle as a reference upper bound. In this

condition, I apply kernel density estimation over the distribution of the relevant

documents based on human assessor judgments. This characterizes how much tem-

poral signal can be extracted to improve relevance ranking, at least with this class

of density estimation techniques.

To build the query trend features, we need to precompute collection frequencies

across time windows for the entire vocabulary. I aggregated term statistics and

worked with query trends at the day granularity—that is, each term’s trend is

represented by an integer array of size 59, where each integer denotes the collection

frequency for a single day. By discarding terms with a collection frequency lower

than five, I extracted a total of 2.3 million unigrams and 23.1 million bigrams from

the Tweets2013 collection. I used the PForDelta encoding technique to compress

the term statistics time series (in Chapter 4.2), down to a size of 0.26 GB for

unigrams and 2.2 GB for bigrams. The average decoding time of the compressed

term statistics is 5.1 µs per unigram and 5.8 µs per bigram on a commodity server.

Due to the efficient compression, we are able to load the term statistics into memory

to estimate query trend features very quickly.
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Odd-Even Even-Odd Cross
ID Method AP P30 AP P30 AP P30
1 Query Likelihood (QL) [52] 0.271 0.475 0.357 0.564 0.315 0.520
2 Recency prior [26] 0.277 0.4991 0.359 0.574 0.313 0.5341,4

3 Moving Window (WIN) [61] 0.2831 0.4871 0.358 0.567 0.319 0.527
4

KDE [16]
IRDu 0.273 0.481 0.350 0.566 0.308 0.515

5 IRDs 0.274 0.4871 0.353 0.5771 0.314 0.5301,4

6 IRDr 0.2881,4,5 0.5171,3-5 0.360 0.5881-4 0.3271,2,4,5 0.5521-5

7 QT 0.278 0.4921,4 0.3671,4,5 0.5871-4 0.320 0.5301,4

8 This Reg 0.276 0.4881 0.3661,4,5 0.5761 0.3291,2,4,5 0.5351,4

9 work QT-IRDr 0.2901,2,4,5 0.5221-5 0.3701-5 0.5981-5 0.3281,2,4,5 0.5651-5

10 Reg-IRDr 0.3021-6 0.5351-5 0.3681-5 0.5961-5 0.3321-5 0.5661-5

11 Oracle 0.3141-6 0.5361-6 0.3821-6 0.6361-6 0.3491-6 0.5861-6

Table 4.5: Results from the TREC 2013/14 Microblog Track test collections: “Odd-
Even” represents training on odd topics and testing on even topics; “Even-Odd”
represents the opposite; “Cross” represents four-fold cross validation. Superscripts
indicate the row indexes from which the metric differences are statistically significant
(p < 0.05).

4.4.1 Effectiveness of Temporal Models

The experimental results are summarized in Table 4.5. Each row denotes an

experimental condition (numbered for convenience): the third column “Odd-Even”

represents training on odd-numbered topics and testing on even-numbered topics;

“Even-Odd” represents the opposite; “Cross” represents four-fold cross validation.

The best result for each setting is in bold. I compare each method against all lexical

and temporal baselines for statistical significance using Fisher’s two-sided, paired

randomization test [1]. Superscripts indicate the row indexes from which the metric

differences are statistically significant (p < 0.05).

First, we observe that most temporal baselines (Recency, WIN, IRDs, and

IRDr) outperform the lexical baseline in terms of P30, but generally not in terms

of AP, suggesting that they are better suited to improving early precision. Among

the temporal baselines, IRDu performs consistently the worst and IRDr outperforms
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the rest. Note that while IRDs and IRDr both place more weight on top-ranked

documents, the gap in effectiveness comes from the fact that the retrieved scores

of the top-ranked documents are generally quite similar. Thus, score normalization

does not introduce sufficient bias to help us distinguish the high-ranking documents.

Second, we see that my query trend methods (QT and Reg) significantly out-

perform the lexical baselines in most conditions, suggesting that signals captured

from temporal collection statistics are beneficial to relevance ranking. While these

“vanilla” query trend methods alone do not significantly improve over the tempo-

ral baselines, combining them with the pseudo trend methods (as in QT+IRDr and

Reg+IRDr) yields a boost in effectiveness. These ensemble methods are consistently

more effective than the best-performing temporal baseline IRDr. They also come

close to the upper bound (oracle) in some conditions, especially for P30. For the

Reg+IRDr model, features 1, 4, and 10 (query likelihood, IRDr, Reg features) re-

ceived weights 0.84, 0.10, and 0.06 in the Odd-Even split, respectively, which shows

that the different sources of temporal evidence are complementary.

In the above experiments, I noticed variance in effectiveness under different

conditions, depending on how the test collections are split into training/test sets.

My random split experiments were designed to factor out noise from this issue. In

each trial, I trained on half of the topics (randomly selected) and evaluated on the

other half. I then computed the effectiveness differences between each technique

and the QL baseline. These differences, collected over 30 trials, are summarized

in box-and-whiskers plots in Figure 4.2 for all temporal approaches. I show the

distribution of effectiveness differences in terms of AP (left) and P30 (right). Each
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(a) AP on TREC 2013/14 (b) P30 on TREC 2013/14

Figure 4.2: Box-and-whiskers plots summarizing how much each temporal model
outperforms the QL baseline across 30 random trials (half for training, half for
testing) on the TREC 2013/14 Microblog Track test collections.

box represents the span between the first and third quartiles, with a horizontal

line at the median value. Whiskers extend from the ends of each box to the most

distant point whose value lies within 1.5 times the interquartile range. Points that

lie outside these limits are drawn individually. These results capture the overall

effectiveness of each method, better than metrics from any single arbitrary split.

From Figure 4.2, it is clear that IRDr outperforms all baselines as well as the

raw query trend approaches (QT and Reg). The ensemble approaches (QT+IRDr

and Reg+IRDr) yield further improvement over IRDr, with Reg+IRDr coming out

higher. Although I did not observe a statistically significant difference between the

best ensemble method (Reg+IRDr) and the best baseline (IRDr) in the previous

experiments, the box plots show that the effectiveness gains of Reg+IRDr are more

consistent, This is especially true for P30 (right side of Figure 4.2): the median of

Reg+IRDr is above 0.05 whereas IRDr has a median below 0.04. Another obser-

vation is that the bottom of the Reg+IRDr box is still above the top of the IRDr

box, meaning that the top 75% of Reg+IRDr runs were better than the bottom
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75% of IRDr runs. Although it is difficult to definitively conclude statistical signif-

icance from these experiments, quantifying the variance associated with arbitrary

training/test splits provides additional evidence supporting the effectiveness of my

proposed methods.

4.4.2 Per-Topic Analysis

In order to gain a better understanding of how different temporal features con-

tribute to effectiveness in temporal ranking, we performed a topic-by-topic analysis

along with an in-depth examination of the various component distributions. Due to

a lack of space, here we present only results comparing the best-performing ensemble

model (Reg+IRDr) against the lexical baseline QL and the temporal baseline IRDr.

In Figure 4.3, I show per-topic differences as a bar chart, measured in terms of P30

on the even topics from the TREC 2013/14 Microblog Track test collections.

From the top bar chart in Figure 4.3, we can see that the ensemble model

(Reg+IRDr) improves over the QL baseline for most of the topics; there are only a

few topics where effectiveness decreases (and not by much). From the bottom bar

chart, we see that Reg+IRDr improves over IRDr alone, which confirms that the

regression model contributes additional signal over kernel density estimation alone.

In Figure 4.4, I take a closer look at the best-performing topic, MB144 “down-

town abbey actor turnover”. The top row shows the distribution of relevant doc-

uments (in red), the second row shows the distribution inferred from the pseudo

trend using IRDr (in green), and the remaining rows show the query trends (in
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Figure 4.3: Per-topic improvements of the ensemble model Reg+IRDr compared to
the QL baseline and IRDr method.

blue). Clearly, we can see that the distribution of relevant documents has two

peaks, one around days 3–5 and the other around days 14–16. We can observe that

the pseudo trend from IRDr is able to capture the burst of relevant documents at

days 3–5. We also see a strong correlation between the query trends (unigrams

“downtown”, “abbey”, and the bigram “downtown abbey”) and the ground truth

relevance distribution at days 14–16. Thus, the combination of pseudo trend and

query trend features allows us to nicely recover this multimodal distribution, which

is affirmed by the large improvements for this topic compared to both QL and IRDr.

In addition, the regression model is able to smooth out noise from non-important

terms “actor” and “turnover”. This observation is confirmed in many other topics,

like MB192 “whooping cough epidemic” and MB204 “sotomayor, prosecutor, racial

comment”, where we also observe strong correlations between query trends and the

ground truth relevance distributions.
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Figure 4.4: Analysis of MB144 (“downtown abbey actor turnover”) from the TREC
2013 Microblog Track. Rows show: distribution of relevant documents (red), pseudo
trend based on KDE (green), and query trends (blue).

I also examined topics where effectiveness decreased with respect to IRDr, such

as MB116 “Chinese computer attacks” and MB118 “Israel and Turkey reconcile”.

I found that the representative query trends (the unigram “Chinese” for MB116

and the bigram “and Turkey” for MB118) are very different from the distribution

of relevant documents, and thus my methods infer an inaccurate distribution. No

approach is perfect, but overall the per-topic analysis affirms the effectiveness of my

query trend methods.
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4.5 Conclusion

Quite obviously, the temporal distribution of relevant documents provides an

important signal for temporal ranking. As an alternative to previous pseudo trend

methods that analyze the results of an initial query to infer this distribution, I

propose query trend methods that attempt to make predictions directly from the

temporal collection statistics of query terms. Experiments show that these sources of

evidence are complementary, and the regression method appears to be more effective

than the feature-based approach. Although query trend methods alone, which do not

require an initial retrieval, improve over a lexical baseline, combining query trends

with pseudo trends yields the best results. This ensemble approach, however, does

require an initial retrieval, which negates the performance advantages of query trend

methods. Costly approaches that involve actually searching the collection appear

to provide temporal signals that we currently cannot obtain from the temporal

collection statistics of query terms alone.
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Chapter 5: Multi-Perspective Lexical Modeling for Tweet Search

5.1 Introduction

In Chapter 3, I have shown that effective temporal models for tweet search re-

quire good representations of query–document similarities. However, existing state-

of-the-art neural ranking models are insufficient for this purpose, as the experi-

ments have verified in Chapter 3.6.1. Therefore, I explore a novel lexical modeling

technique by taking advantage of recent advances in neural networks, which have

achieved great success in many natural language processing (NLP) tasks, such as

question answering [31, 46], paraphrase detection [80], and textual semantic simi-

larity modeling [76]. Many of these tasks can be treated as variants of a semantic

matching problem, where two pieces of texts are jointly modeled through distributed

representations of sentences for similarity learning. Various neural network architec-

tures, e.g., Siamese networks [115], sequence-to-sequence models [27], and attention

mechanism [77], have been proposed to model the semantic similarity of a text pair

using diverse modeling techniques.

On the other hand, techniques based on deep learning and neural networks

offer exciting opportunities for the information retrieval community. For example,

distributed word representations (e.g., word2vec [92]) provide a promising solution
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to overcome the vocabulary mismatch problem in ranking [126]. However, there are

still fundamental challenges to be solved. Guo et al. [10] pointed out that relevance

matching, which is the core problem in IR, has different characteristics from the

semantic matching problem that many NLP models are designed for. In particular,

exact match signals still play a critical role in ranking, more than the role of term

matching in, for example, paraphrase detection. Furthermore, in document ranking

there is an asymmetry between queries and documents in terms of length and the

richness of signals that can be extracted; thus, symmetric models such as Siamese

architectures may not be entirely appropriate. Nevertheless, significant progress has

been made, and many neural ranking models have been recently proposed [11, 36,

37,89,91], which have been shown to be effective on ad hoc retrieval.

Despite much progress, it remains unclear how neural ranking models designed

for “traditional” ad hoc retrieval tasks perform on searching social media posts such

as tweets on Twitter. I identify several important differences:

• Document length. Social media posts are much shorter than web or newswire

documents. For example, tweets are limited to 280 characters. Thus, ad hoc re-

trieval in this domain contains elements of semantic matching because queries and

posts are much closer in length. In particular, neural models that rely on sentence-

level or paragraph-level interactions and global matching mechanisms [37] are

unlikely to be effective.

• Informality. Idiosyncratic conventions (e.g., hashtags), abbreviations (“Happy

Birthday” as “HBD”), typos, intentional misspellings, and emojis are prevalent in
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social media posts. An effective ranking model should account for such language

variations and term mismatches due to the informality of posts.

• Heterogeneous relevance signals. The nature of social media platforms drives

users to be actively engaged in many real-world news and events; users frequently

take advantage of URLs or hashtags to gain exposure to their posts. Such hetero-

geneous signals are not well exploited by existing models, which can potentially

boost ranking effectiveness when modeled together with the textual content.

To this end, I present a novel neural ranking model for ad hoc retrieval over short so-

cial media posts that is specifically designed with the above characteristics in mind.

My model, MP-HCNN (Multi-Perspective Hierarchical Convolutional Neural Net-

work), aims to model the relevance of a social media post to a query in a multi-

perspective manner, and has three key features:

1. To cope with the informality of social media and to support more robust match-

ing, I apply word-level as well as character-level modeling, with URL-specific

matching. This allows us to exploit noisy relevance signal at different granulari-

ties (Chapter 5.2.1).

2. My model consists of stacked convolutional neural network layers to capture

latent semantic soft-match signals between query and post contents (tweets in

our case, but we use posts for generic purpose). By gradually expanding the

convolutional window in a hierarchical manner, increasingly larger contexts can

be leveraged for modeling relevance, starting from character-level and word-level

to phrase-level, and finally to sentence-level (Chapter 5.2.2).
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3. Matching of learned representations between query and posts as well as URLs is

accomplished with a pooling-based similarity measurement layer where term im-

portance weights are injected at each convolutional layer as priors (Chapter 5.2.3).

Finally, all relevance signals are then integrated using a fully-connected layers to

yield the final relevance ranking. Optionally, the neural matching score can be inte-

grated with lexical matching via linear interpolation to further enhance effectiveness.

I view my contributions in this chapter as below:

• I highlight three important characteristics of social media posts that make ad hoc

retrieval over such collections different from searching web pages and newswire

documents. Starting from these insights, I developed MP-HCNN, a novel neural

ranking model specifically designed to address these characteristics. To my best

knowledge, this is also the first neural ranking model developed specifically for ad

hoc retrieval over social media posts.

• I evaluate the effectiveness of my MP-HCNN model on four Twitter benchmark

collections from the TREC Microblog Tracks 2011–2014. My model is compared

to learning-to-rank approaches as well as many recent state-of-the-art neural rank-

ing models that are designed for web search and “traditional” ad hoc retrieval.

Extensive experiments show that my model improves the state-of-the-art over

previous approaches significantly. Ablation studies further confirm that these

improvements come from specific components of my model designed to tackle

characteristics of social media posts as identified above.
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In the following, I introduce the proposed model architecture in Chapter 5.2, followed

by its evaluation in Chapter 5.3 and the conclusion in Chapter 5.4.

5.2 Model Architecture

As discussed in the introduction, the proposed model, MP-HCNN (Multi-

Perspective Hierarchical Convolutional Neural Network), has three key features:

First, I apply word-level as well as character-level modeling on query, posts, and

URLs to cope with the informality of social media posts (Chapter 5.2.1). Second, I

exploit stacked convolutional layers to learn soft-match relevance at multiple gran-

ularities (Chapter 5.2.2). Finally, matches between the learned representations via

pool with injected external weights are learned (Chapter 5.2.3). The overall model

architecture is shown in Figure 5.1, and each of the above key features are described

in detail below.

5.2.1 Multi-Perspective Input-level Modeling

A standard way for neural text processing is to take advantage of word em-

beddings (e.g., word2vec [92]) to encode each word. However, in the social media

domain, informal post contents produce a large amount of out of vocabulary (OOV)

words which can’t be found in pre-trained word embeddings. The embeddings of

OOV words are randomly initialized by default. In fact, I observe about 50%-60%

words are OOV words in the TREC Microblog datasets (details in Table 3.1). This

greatly complicates the matching process simply relying on word-level semantics,
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Figure 5.1: Overview of the Multi-Perspective Hierarchical Convolutional Neu-
ral Network model, which consists of two parallel components for word-level and
character-level modeling between queries, social media posts, and URLs. The two
parallel components share the same architecture (with different parameters), which
comprises hierarchical convolutional layers for representation learning and a seman-
tic similarity layer for multi-level matching. Finally, all relevance signals are inte-
grated using a fully-connected layer to produce the final relevance score.

motivating the need for character-level input modeling to copy with noisy texts.

To better understand the origin of OOV errors, I randomly select 500 OOV

words from the vocabulary and provide a summary of the major sources of OOV

occurrences in the social media domain as well as a few examples below:

1. Compounds (42.4%): chome-os, actor-director, earlystage

2. Non-English words (29.2%): emociones (Spainish, emotions), desgostosa

(Portuguese, disgusted), hayatım (Turkish, sweetheart)

3. Typos (17.1%): begngen (beggen), yawnn (yawn), tansport (transport), af-

ternoo (afternoon), foreverrrr (forever)

4. Abbreviations (5.6%): EASP (European Association of Social Psychology),
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Query MB001: BBC world service cuts
Tweet BBC news - BBC world service cuts to

be outlined to staff #bbcworldservice.
URL http://bbc-world-service-to-cut-staff.html?spref=tw

Table 5.1: Example query-post pair retrieved by topic MB001 from the TREC
Microblog 2011 dataset.

b-day (birthday)

5. Domain-specific words (5.7%): utf-8, vlookup

As we can see above, compounds, non-English words and typos are the three major

source for OOV words. Character-level modeling is beneficial for both the com-

pounds and typos cases.

In addition, social media posts often comprise many heterogeneous signals

which can contain fruitful relevance signals, such as mentions, hashtags, or external

URL links. An analysis over the TREC Microblog Track 2011–2014 datasets show

around 50% tweet posts contain one or more URL links. More detailed statistics

can be found in Table 3.1. In fact, by taking a closer look at the data, I observe

many URL links can be fuzzy matched to query texts. I provide one example in

Table 5.1. For those posts without URLs, I add a placeholder symbol “<URL>”.

It’s worth noting that we don’t model the document texts referenced by the URLs

since many URL links are not accessible over time and the HTML formats of many

web documents are quite noisy, making it difficult to extract content.

To tackle the above overwhelming language variation issues and utilize the

URL information, I consider multiple inputs for relevance modeling: (1) query and

post at word-level; (2) query and post at character-level; (3) query and URL at
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character-level. For character-level modeling, I partition the query and post con-

tent as well as the URL link to a sequence of character trigrams (e.g., “hello” to

{#he, hel, ell, llo, lo#}), which has shown to obtain good effectiveness in capturing

morphological variations and reducing the vocabulary size for efficient learning [11].

Then I adopt the same architecture as the word-level semantic modeling to cap-

ture the matching evidences at character-level, which I will discuss in the following

section.

5.2.2 Hierarchical Representation Learning

Given a query q and a document d, the textual matching component aims

to learn a relevance score f(q, d) using the query terms {wq1, w
q
2, ..., w

q
n} and docu-

ment terms {wd1, wd2, ..., wdm}, where n and m are the number of terms in q and d,

respectively. To be clear, “document” can either refer to a social media post or

an URL, and “term” refers to either words or character trigrams. One important

novel aspect of my model is relevance modeling from multiple perspectives, and my

architecture exhibits symmetry in the word- and character-level modeling (see Fig-

ure 5.1), and thus for expository convenience, I use “document” and “term” in the

generic sense above. I first employ an embedding layer to convert each term into

a L-dimensional vector representation, generating a matrix representation for the

query Q and document D, where Q ∈ Rn×L and D ∈ Rm×L. In the following, I

introduce my representation learning method with hierarchical convolutional neural

networks.
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A convolutional layer applies convolutional filters to the text which are rep-

resented by an embedding matrix M, such as Q or D. Let W ∈ Rk×L denote a

convolutional filter with a window size of k (L is the size of embeddings). We move

this filter through the input text gradually, and at each step, we sum up the k term

embeddings from the input matrix slice Mi:i+k weighted by the filter parameters W.

More formally, we obtain a vector representation v ∈ R‖M‖−k+1 of the input, with

the i-th dimension of v calculated as:

vi =
k∑
j=1

L∑
l=1

Wj,l ·Mi+j,l + b,

where b is a bias value added to the weighted sum. Intuitively, vi can be regarded as

a weighted average of the i-th k-gram in the input sentence, learned by the filter W.

To ensure a fixed-size output vector v, we pad the input matrix M with k − 1 zero

columns such that v has a size of ‖M‖, where‖M‖ equals to n for Q and m for D.

To increase the modeling capacity, each convolutional layer applies F different filters

to the input, and therefore produces F output vectors {v1, v2, . . . , vF}. Lastly we

concatenate all F output vectors and apply a non-linear activation function ReLU

element-wise to obtain the output representation matrix Mo ∈ R‖M‖×F for this CNN

layer:

Mo = CNN(M) = ReLU([v1; v2; . . . ; vF ]).

This CNN layer with F filters comprises of F × (kL+ 1) parameters with F × (KL)

parameters from the filters and F from the bias terms.
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I then stack multiple convolutional layers in a hierarchical manner to obtain

higher-level k-gram representations. For notation simplicity, I drop the superscript

o from all output matrices and add a superscript h to denote the output of the h-th

convolutional layer. Stacking N CNN layers therefore corresponds to obtaining the

output matrix of the h-th layer Mh ∈ R‖M‖×Fh
via:

Mh = CNNh(Mh−1), h = 1, . . . , N,

where Mh−1 is the output matrix of the (h − 1)-th convolutional layer. Note that

M0 = M denotes the matrix Q and P obtained directly from the word embedding

layer, and the parameters of each CNN layer are shared by the query and document

inputs.

Intuitively, consecutive convolutional layers allow us to obtain higher-level

abstractions of the texts, starting from character-level or word-level to phrase-level

and eventually to sentence-level. A single CNN layer is able to capture the k-

gram semantics from the input embeddings, and two CNN layers together would

allow us to expand the context window to up to 2k − 1 terms. Generally speaking,

the deeper the convolutional layers, the wider the context considered for relevance

matching. Empirically, I found the filter size k of 2 for word-level inputs and 4 for

character-level inputs worked well. The number of convolution layers N was set to

4. This setting is reasonable as it enables us to gradually learn the representations of

word-level and character-level n-gram of up to O(N ∗ k) length. Since most queries

and documents in the social media domain are shorter or closer to this length, we
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can think the outputs from the last convolutional layer as an approximation of the

sentence representations.

An alternative to my deep hierarchical design is a wide architecture, which

reduces the depth but expands the width of the network, by concatenating multiple

convolutional layers with different filter sizes k in parallel to learn the variable-

sized phrase representations. However, such design will require quadratically more

parameters and be less efficient than my approach. More specifically, my deep

model comprises of O(N × F × kL) parameters with N CNN layers, while a wide

architecture with the same representation window will need O(F × (kL+2kL+ ...+

NkL)) = O(N2 × F × kL) parameters. The saved parameters mainly come from

the representation reusing at each CNN layer, which also generalizes the learning

process by sharing representations between successive layers.

5.2.3 Similarity Measurement and Weighting

To measure the similarity between the query and the document, I match the

query with the document at each convolutional layer by taking the dot product be-

tween the query representation matrix Mq and the document representation matrix

Md:

S = MqMd
T ,S ∈ Rn×m,

where Si,j can be considered the similarity score by matching the query phrase

vector Mq[i] with the document phrase vector Md[j]. Since the query and document
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share the same convolutional layers, similar phrases will be placed closer in a high-

dimensional embedding space and their product will produce larger scores. Next we

obtain a normalized similarity matrix S̃ by applying a softmax function over S to

normalize the similarity scores into [0, 1] range:

S̃i,j = softmax(Si,j) =
eSi,j∑m
k=1 e

Si,k
.

For each query phrase i, the above softmax function normalizes its matching scores

to all phrases in the document, and helps discriminate those matches with significant

higher scores. An exact match will dominate others and contribute a similarity score

close to 1.0. I then apply max and mean pooling to the similarity matrix to obtain

discriminative feature vectors:

Max(S) = [max(S̃1,:),max(S̃2,:), ...,max(S̃n,:)],

Mean(S) = [mean(S̃1,:),mean(S̃2,:), ...,mean(S̃n,:)],

Max(S),Mean(S) ∈ Rn.

Each score generated from pooling can be viewed as a matching evidence of a specific

query phrase to the document. Its value denotes the significance of relevance signal.

Compared to Max pooling, Mean pooling is beneficial for the cases when a query

phrase is matched to multiple relevant terms in the document.

To measure the relative importance of different query terms and phrases, I

inject external weights as prior information by multiplying the score after pooling

with the weighting of that specific query term/phrase. These are provided as feature
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inputs to the subsequent learning to rank layer, denoted by Φ:

Φ = {weights(q)�Max(S), weights(q)�Mean(S)},

Φ ∈ 2 · Rn,

(5.1)

where � is an element-wise product between the weights of query terms/phrases

with the pooling scores. weights(q)i denotes the weight of the i-th term or phrase

in the query. Its value changes in the intermediate CNN layers since deeper CNN

layer represents longer phrases. Note that the weights of long phrases become sparse

as the depth of CNN layers increases. Therefore I only use weights for the first two

CNN layers (N = 1, 2) for word-level inputs, and N = 1, 2, 3 for character-level

inputs. The weights of upper layers are assigned a default value of 1.0. I choose

the classical inverse document frequency (IDF) as the weighting measure. A higher

IDF weight implies a rarer occurrence in the collection thus a larger discrimination

power. The weighting method also allows us to reduce the impact of high matching

scores from common words like stop words. There can be some other weighting

mechanisms, like weights generated from a pseudo-relevance feedback method [127]

or from a sequential dependency model [128]. I leave these as future directions.

The similarity measurement layer has two important properties. First, all

the layers here, including matching, softmax, pooling, and weights, have no learn-

able parameters. Second, the parameter-free nature enables my model to be highly

interpretable and more robust from overfitting. By matching query phrases with

document phrases in a joint manner, we can easily track which phrase matching

contributes more relevance signal to the final prediction. This boosts the inter-
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pretability of my model greatly as it has become a prevalent concern with the com-

plicated neural models for IR and NLP applications [129].

5.2.4 Evidence Integration

Given the similarity features learned from word-level Φw (from Equation 5.1)

and character-level Φc, I employ a simple fully-connected layer with two linear layers

and a non-linear ReLU activation in between as the learning to rank module:

o = softmax(Wh2·ReLU(Wh1 · Φ + bh1) + bh2),

o ∈ R|class|,

where Φ = ΦwtΦc and {Wh1 ,Wh2 , bh1 , bh2} are the weight matrices and bias vectors

in the two linear layers, t is a concatenation operation. The outside softmax function

normalizes the final prediction to a similarity vector o with its values between 0 and

1. The training goal is to minimize the negative log likelihood loss L summed over

all samples (oi, yi) below:

L = −
∑

(oi,yi)

log oi[yi],

where yi is the annotation label of sample i.

5.2.5 Interpolation with Language Model

Various studies have shown that neural network-based models are good at

capturing soft-match signals [10, 89]. However, are the exact match signals still
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effective to neural network-based methods? I examine this hypothesis by adopting

a commonly-used linear interpolation method to combine the ranking scores of NN-

based model with language model between a (query, document) pair:

Score(q, d) = λ · NN(q, d) + (1− λ) · LM(q, d). (5.2)

The best hyper-parameter λ is tuned on the training and validation set, and the in-

terpolated scores are leveraged for re-ranking. I choose the query-likelihood method

(QL) [130] as the language model here. The interpolation technique is applied to my

multi-perspective model and other NN-based methods I used as baselines in this pa-

per. I report both effectiveness with and without interpolation in the experimental

section.

5.3 Evaluation

5.3.1 Dataset Preprocessing

I use the four TREC Microblog topic sets (2011–2014), described in Chap-

ter 3.5, to evaluate the effectiveness of the MP-HCNN model. I run four-fold cross

validation where each of the four datasets is used for evaluation, with the other

three used for training (e.g., train on TREC 2011–2013, test on TREC 2014). In

each experiment, I sample 10% of the training queries as the validation set. The

same padding strategy is used across the four datasets by setting to the largest

query/document/URL length, where each query is padded to 10 words and 51 char-
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acters, each tweet is padded to 68 words and 140 characters and each URL is padded

to 120 characters, respectively. The mentions are removed and hashtags are treated

as normal words (i.e., “#bbc” to “bbc”). The IDF weights of word and character

k-grams are computed from the Tweets2013 collection.

5.3.2 Baselines

I compare the MP-HCNN model to a number of competitive non-neural and

neural baselines: 1) non-neural baselines such as language model and pseudo feed-

back algorithm; 2) neural baselines with recent neural ranking models designed for

“standard” ad hoc retrieval tasks on web and newswire documents. The non-neural

baselines are as follows:

1. Query Likelihood (QL) [130] is the most widely-used language modeling base-

line.

2. RM3 [127] is an interpolation model combining the QL score with a relevance

model using pseudo-relevance feedback.

3. Learning to Rank (L2R). I adopt the LambdaRank [60] as a L2R baseline,

which is a competitive ranking algorithm that won the Yahoo! Learning to Rank

Challenge [131]. I designed three sets of features: (a) text-based: in addition to

QL, I compute another four overlap-based measures between each query-tweet

pair (word overlap and IDF-weighted word overlap computed between all words

and only non-stopwords, from Severyn and Moschitti [31]); (b) URL-based:

whether the tweet contains URLs and the fraction of query terms that matched
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parts of URLs; (c) hashtag-based: whether tweets contains hashtags and the

fraction of query terms that matched hashtags.

The neural baselines are as follows:

4. DSSM (2013) [11] is one of the earliest NN architectures for web search that

uses word hashing to model interactions between queries and programs at the

level of character 3-grams.

5. C-DSSM (2014) [36] is a variant of DSSM that replaces the fully-connected

layer in DSSM with a CNN-based model to capture local contextual signals from

neighboring n-grams.

6. MatchPyramid (2016) [37] uses a CNN-based model to to extract matching

patterns from word level to phrase level and sentence level from a similarity

matrix.

7. DRMM (2016) [10] is an interaction-based approach that converts the similar-

ity matrix of query and document to a histogram representation for relevance

prediction.

8. DUET (2017) [91] is document ranking model that combines a local component

for exact match and a global component for semantic match between query and

document.

9. K-NRM (2017) [89] introduces a differentiable kernel-based layer to capture

multi-level granularities of soft match signals from the input similarity matrix.
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5.3.3 Implementation Details

Model Training. To enable fair comparison with the baselines, I adopt the same

tuning strategies, such as embeddings, optimizer, and hyper-parameter tuning, in

my experiments. I use the word2vec [92] 300-dimension word vectors pre-trained

from Google News dataset with 100B tokens. From Table 3.1, more than 50% words

(OOV words) are out of the word2vec vocabulary across all datasets. This could

have a negative impact on model effectiveness since the embeddings of those OOV

words and character trigrams are both initialized from a uniform sampling between

[0, 0.1]. All the embeddings are updated during training. Stochastic gradient descent

(SGD) with a learning rate of 0.05 and a batch size of 256 is used for training. The

linear layer size in the learning to rank component is set to 150. The convolutional

filter sizes are set to 2 for words and 4 for characters. The maximum number of

convolutional layers N is set to 4. The number of convolutional filters is tuned be-

tween {64, 128, 256}, and the dropout rate is tuned between {0, 0.1, 0.2, 0.3, 0.4, 0.5}

on validation set. At test time, I selected the model that obtained the lowest loss on

the validation set for evaluation. The interpolation parameter λ is tuned after the

neural network model converges. My model is implemented using the Keras frame-

work, while the other neural baselines are open-sourced in the MatchZoo library.1

Model Size. The total number of parameters in the proposed MP-HCNN model

is about 71M, where 48% parameters are coming from the learnable word embed-

dings and another 47% are from the character trigram embeddings. Only about 5%

1https://github.com/faneshion/MatchZoo
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(3.5M) parameters are from the convolutional part and learning to rank layer. It’s

worth noting that although word-level and character-level inputs share the same

architecture, they have different parameters. For character-level inputs, query-post

and query-URL modeling share the same parameters. The training process of MP-

HCNN consumes about 3 minutes per epoch on a GPU machine (GeForce GTX

1080) with 8 GB memory and usually converges in 10 epochs.

5.3.4 Experimental Results

The experimental results of the MP-HCNN model are shown in Tables 5.2

and 5.3. Rows are numbered in the first column for convenience. I run statistical

significance tests using Fisher’s two-sided, paired randomization test [1] against the

three non-neural baselines: QL, RM3, and L2R (with all features). Superscripts

indicate the row indexes for which a metric difference is statistically significant at

p < 0.05.

From the first block “Non-Neural Baselines” in Table 5.2 and 5.3, we can see

that RM3 significantly outperforms QL on all datasets, demonstrating its superior

effectiveness. However, RM3 requires an extra round of retrieval to select terms for

query expansion, which is substantially slower. L2R achieves effectiveness on par

with RM3 when using all the hand-crafted features. From its contrastive variant

with only text-based features, we can see that the overlap-based features provide

little gain over QL. Comparing the rows “(text+URL)” and “(text+hashtag)” to

row “(text)”, adding URL-based features leads to a significant improvement over
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ID
Model 2011 2012
Metric MAP P30 MAP P30

Non-Neural Baselines
1 QL [130] 0.3576 0.4000 0.2091 0.3311
2 RM3 [127] 0.38241 0.42111 0.23421 0.3452
3 L2R [60] (all) 0.38451 0.4279 0.22911 0.3559

(text) 0.3547 0.4027 0.2072 0.3294
(text+URL) 0.3816 0.4272 0.2317 0.3667

(text+hashtag) 0.3473 0.4020 0.2039 0.3175
Neural Baselines

4 DSSM [11] (2013) 0.1742 0.2340 0.1087 0.1791
5 C-DSSM [36] (2014) 0.0887 0.1122 0.0803 0.1525
6 DUET [91] (2017) 0.1533 0.2109 0.1325 0.2356
7 MatchPyramid [37] (2016) 0.1967 0.2259 0.1334 0.2390
8 DRMM [10] (2016) 0.2635 0.3095 0.1777 0.3169
9 K-NRM [89] (2017) 0.2519 0.3034 0.1607 0.2966

Neural Baselines with Interpolation
10 DRMM+ 0.3477 0.4034 0.2213 0.3537
11 DUET+ 0.3576 0.4000 0.22431 0.36441

12 K-NRM+ 0.3576 0.4000 0.22771 0.35201

Proposed Model
13 MP-HCNN 0.3940 0.4306 0.23131 0.37571

14 MP-HCNN+ 0.41931,2,3 0.46531,2,3 0.24821,3 0.39151,2,3

(+17.2%) (+16.3%) (+18.6%) (+18.2%)

Table 5.2: Main results on TREC Microblog 2011–2012 datasets. Rows are num-
bered in the first column for convenience, and each row represents a model or a
contrastive condition. Superscripts indicate the row indexes for which a metric
difference is statistically significant at p < 0.05.

text-based features, while hashtag-based features seem to bring fewer benefits. This

confirms our observation in Table 3.1 that URLs appear more frequently in tweets

and contain meaningful relevance signals.

Looking at the second block “Neural Baselines”, we find all the neural meth-

ods perform worse than the QL baseline. In fact, all the character-based approaches

(DSSM, C-DSSM, and DUET) are consistently worse than the word-based ap-

proaches (MatchPyramid, DRMM, K-NRM). This is likely attributable to the fact
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ID
Model 2013 2014
Metric MAP P30 MAP P30

Non-Neural Baselines
1 QL [130] 0.2532 0.4450 0.3924 0.6182
2 RM3 [127] 0.27661,2 0.47331 0.44801,3 0.6339
3 L2R [60] (all) 0.2477 0.4617 0.3943 0.6200

(text) 0.2394 0.4456 0.3824 0.6091
(text+URL) 0.2489 0.4506 0.3974 0.6206

(text+hashtag) 0.2447 0.4533 0.3815 0.5939
Neural Baselines

4 DSSM [11] (2013) 0.1434 0.2772 0.2566 0.4261
5 C-DSSM [36] (2014) 0.0892 0.1717 0.1884 0.2752
6 DUET [91] (2017) 0.1380 0.2528 0.2680 0.4091
7 MatchPyramid [37] (2016) 0.1378 0.2561 0.2722 0.4491
8 DRMM [10] (2016) 0.2102 0.4061 0.3440 0.5424
9 K-NRM [89] (2017) 0.1750 0.3178 0.3472 0.5388

Neural Baselines with Interpolation
10 DRMM+ 0.2639 0.4772 0.4042 0.6139
11 DUET+ 0.27791,3 0.48781 0.42191,3 0.64671

12 K-NRM+ 0.27211,3 0.4756 0.41371,3 0.63581

Proposed Model
13 MP-HCNN 0.28561,3 0.52111,3 0.4178 0.6279
14 MP-HCNN+ 0.29371,3 0.52501,2,3 0.44031,3 0.6455

(+15.9%) (+17.9%) (+12.2%) (+4.4%)

Table 5.3: Main results on TREC Microblog 2013–2014 datasets. Superscripts in-
dicate the row indexes for which a metric difference is statistically significant at
p < 0.05.

that all word-based NN models use pre-trained word vectors that encode more se-

mantics than a random initialization of character trigram embeddings, suggesting

that the Twitter datasets are not sufficient to support learning character-based rep-

resentations from scratch. Particularly, C-DSSM suffers more than DSSM, showing

that a more complex model leads to lower effectiveness in a data-poor setting. Com-

paring the three word-based NN models, DRMM seems to be most effective while

MatchPyramid is the worst. Considering that the three models share the same

embedding-based similarity matrix as input, the large effectiveness differences be-
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tween DRMM/K-NRM and MatchPyramid suggest that term weighting is crucial for

tweet search. In addition, the smaller parameter space of DRMM (161 parameters

in total) affirms that the low effectiveness is not simply because due to a shortage

of data. As a comparison, my MP-HCNN model achieves high effectiveness on all

datasets across both metrics, significantly beating all baselines in most settings.

In the third block “Interpolation Baselines”, we observe that simple interpo-

lation with QL boosts the effectiveness of all neural baselines dramatically, showing

that the exact match signal is complementary to the soft match signals captured by

the NN methods. This observation also holds for my MP-HCNN and only differs in

a smaller margin of improvement (due to the effectiveness of MP-HCNN alone). The

best results on TREC Microblog 2011–2013 datasets are achieved by MP-HCNN+,

with an average of 15% relative improvement against QL (shown in last row). A

minor exception is TREC 2014, where we see that the QL baseline already achieves

fairly high absolute numbers, limiting the space for potential improvement.

Overall, the findings are consistent in the base model and interpolation setups:

(1) existing NN models do not appear to provide effective rankings alone, while some

are marginally effective with interpolation, showing that these ranking models fail

to adapt to tweet search; (2) the MP-HCNN model is more effective than the neural

and non-neural baselines we examined, suggesting that the customized design is

necessary to capture domain-specific characteristics and challenges.
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Setting 2011 2012 2013 2014
Metric MAP P30 MAP P30 MAP P30 MAP P30
QL 0.3576 0.4000 0.2091? 0.3311? 0.2532? 0.4450? 0.3924 0.6182
Full MP-HCNN 0.3940 0.4306 0.2313 0.3757 0.2856 0.5211 0.4178 0.6279
− mean pooling 0.3687? 0.4054? 0.2251 0.3480 0.2766 0.5000 0.3907? 0.5897?
− max pooling 0.0982? 0.1320? 0.0767? 0.1243? 0.0920? 0.1706? 0.1934? 0.2176?
− IDF weighting 0.3511? 0.3714? 0.2119? 0.3452 0.2717? 0.4967? 0.3992 0.6097?
− word module 0.1651? 0.1293? 0.0762? 0.1119? 0.0987? 0.1517? 0.1849? 0.2048?
− URL char rep. 0.3594? 0.3707? 0.2131? 0.3333? 0.2797? 0.4989? 0.4037? 0.6085?
− doc char rep. 0.3603? 0.3721? 0.2188? 0.3537? 0.2757? 0.5122 0.4012 0.6103
− char module 0.3528? 0.3709? 0.2087? 0.3271? 0.2718? 0.5011? 0.4050? 0.6091?

Table 5.4: MP-HCNN Ablation Study. ? denotes the score is significantly lower
than the base MP-HCNN model at p < 0.05.

5.3.5 Ablation Study

To better understand the contribution of each module in the proposed model, I

perform an ablation study on the base MN-CNN model, removing each component

step by step. Here, I aim to study how the semantic-level, character-level, and

weighting modules contribute to model effectiveness. These results are shown in

Table 5.4, with each row denoting the removal of a specific module. For example,

the row “− URL char rep.” represents removing the URL modeling module. The ?

symbol denotes that the model’s effectiveness in the ablation setting is significantly

lower than base MP-HCNN model at p < 0.05. I also add QL performance in the

table as a reference.

From the first two rows “w/o max/mean pooling”, we can see that removing

the max pooling leads to a significant performance drop while taking out mean pool-

ing only results in a minor reduction. This matches our observation that most query

terms only receive at most one exact or relevant match in the short tweets. Mean

pooling on matching features is largely dominated by the max pooling, which se-
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lects the largest matching score for each query term. Also, removing the IDF weights

makes the results consistently and significantly worse across the four datasets, which

confirms that injecting external weights is important for tweet search. It is also no

surprise that the complete word-level module is essential to model effectiveness, as

shown in the table.

Turning our attention to the last three rows, we observe that removing the

character representations of URLs or documents both lead to significant drops across

all datasets, with larger drops when URL representations are removed. This suggests

that URLs provide more relevance signals than character-level document modeling.

Taking away the entire character-level module causes slightly more effectiveness loss.

To conclude, the word-level matching module contributes the most effectiveness, but

the character-level matching module still provides complementary and significantly

useful signals. However, recall the low effectiveness of character-based methods in

Table 5.2 and 5.3, we add a caveat: with more training data or pre-trained character

trigram embeddings, we could expect the benefits of the character-level matching

module to improve.

Additionally, I examine how the depth of hierarchical convolutional layer af-

fects the model effectiveness. Figure 5.2 shows the effectiveness distribution on

MAP score with different convolutional depth N on TREC 2011–2014 datasets. A

setting of N = 0 means there are no convolutional layers on top of the embedding

layer, and the prediction is purely based on the matching evidence at word-level.

A larger value of N indicates wider ranges of phrases are represented and modeled.

We can clearly see there is a consistent climbing pattern with increasing depth on
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Figure 5.2: MAP score with different convolutional depth N on TREC 2011–2014
datasets.

all datasets, except for N = 3 on TREC 2011. For the dataset 2011, 2012 and 2014,

the improvements at N = 2 are quite close to the upper bound at N = 4. This

implies modeling of short phrases brings immediate effectiveness gains while the

inclusion of longer phrases further boosts the overall effectiveness. I don’t explore

larger values of N as N = 4 already enables us to model a window of O(N × k) = 8

consecutive words, which is longer than than most queries and close to the length

of many tweets. Overall, this ablation experiment clearly shows the value of the

hierarchical convolutional layers in semantic modeling at the phrasal level.

5.3.6 Error Analysis

So far, we have shown that the weighted similarity measurement component,

as well as the URL matching and phrase matching (enabled by the hierarchical

architecture), are crucial to the model’s effectiveness. However, we still lack knowl-
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Figure 5.3: Per-query MAP differences of MP-HCNN and MP-HCNN+ vs. QL on
TREC 2011.

edge about the following two questions: (1) What are the common characteristics of

well-performing queries, and how do the different components contribute their effec-

tiveness? (2) When does the proposed model fail, and how can we further improve

the model? Therefore, I provide additional qualitative and quantitative analysis

over sample tweets from well-performing and poor-performing queries.

In Figures 5.3 and 5.4, I visualize the per-query improvements on the MAP

metric for MP-HCNN and MP-HCNN+ against the QL baseline on the TREC

2011 and 2012 datasets, respectively. Since the TREC 2013 and 2014 datasets

exhibit similar trends, I omit their figures here. Overall, we see that the base MP-

HCNN model shows improvements for the majority of queries in both the 2011

and 2012 datasets. In 2011, MP-HCNN wins on 26 topics and loses on 13 topics

out of 49 topics; in 2012, it wins on 35 topics and loses on 19 topics out of 60

topics. The average margin of improvement is also greater than the losses. With

the interpolation technique, MP-HCNN+ is able to smooth out the errors of many
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Figure 5.4: Per-query MAP differences of MP-HCNN and MP-HCNN+ vs. QL on
TREC 2012.

poor-performing topics, such as topic 5 “nist computer security”, resulting in more

stable improvements.

For the five best-performing queries (15, 17, 39, 91, 105), I select the top

20 tweets for each query sorted by the MP-HCNN prediction scores for analysis. I

manually classify the matching evidence of the selected 100 tweets into the following

categories (a tweet can satisfy multiple categories):

• Exact word match: the tweet has exact word matches with the query.

• Exact phrase match: the tweet has exact phrase matches with the query.

• Partial paraphrase match: the tweet has partial phrase matches with the

query. For example, the phrase “the white stripes call it quits” is partially

matched to the query 17 (“white stripes breakup”).

• Partial URL match: the query is contained in or partially matched to the URL

in the tweet.
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Category Percentage (%)

Exact word match 100
Exact phrase match 44
Partial paraphrase match 59
Partial URL match 29

Table 5.5: Matching evidence breakdown by category based on manual analysis of
the top 100 tweets for the five best-performing topics.

Table 5.5 provides a breakdown of matching evidence by category. We can see that

all tweets have exact word matches to the queries, and partial paraphrase matches

occur more frequently than exact phrase matches, suggesting that the hierarchical

architecture with embedding inputs is able to capture those soft semantic match

signals. In addition, partial URL matches make up another big portion, affirming

the need for character-level URL modeling.

To gain additional insights into how my model fails, I select some sample

tweets for the worst-performing queries 2 (“2022 fifa soccer”) and 5 (“nist computer

security”). Some of these sample tweets are shown in Table 5.6. Column “Label”

represents whether the tweet is relevant to the query: “R” denotes relevant and

“I” denotes irrelevant. Column “Score/Rank” shows the prediction scores and the

ranked position of sample tweets produced by each method (QL or MP-HCNN). In

addition, I also visualize the matching scores produced by the similarity measure-

ment layer. The scores are normalized to range [0, 1] from the softmax function, and

are visualized with the pink color background. The brighter the color, the higher

the score. For example, in the second tweet, the word “fifa” has a matching score

of 0.99 to the query, while “2022” has a matching score of 0.22.

Looking at the first tweet, it obtains the highest score by MP-HCNN due
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ID Query Sample Tweet Label
Score/Rank

QL MP-HCNN

1
2: 2022

fifa soccer

#ps3 best sellers: fifa soccer 11 ps3 #cheaptweet

https://www.amazon.com/fifa-soccer -11-playstation-
3

I 7.33(#54) 0.85(#1)

2

qatar ’s 2022 fifa world cup stadiums:

https://wordlesstech.com/qatars-2022-fifa -world-

cup-stadiums/

R 10.58(#2) 0.41(#105)

3

2022 world cup could be held at end of year: fifa :

lausanne switzerland the 2022 world cup in qatar:

http://www.reuters.com/article/us- soccer -world-
blatter

R 11.25(#1) 0.31(#127)

4 5: nist
computer
security

cybersecurity : nist provides advice on securing full

virtualization technologies: the national #security

#hacker https://www.infosecurity .com/news/nist -

provides-advice-on-securing-full/

R 9.79(#6) 0.39(#1)

5

photo: abdul buvar (computer security expert)

malware expert and consultant for network security

as a http://krr48.tumblr.com/post/abdul-buvar-

computer-security-expert-malware

I 5.40(#45) 0.28(#2)

6
new nist guidance tackles public cloud security : 2

other special pubs on cloud defs virtualization
http://www.govinfosecurity .com/articles.php?art id=3321

R 9.79(#5) 0.24(#5)

Table 5.6: Sample analysis of the bad-performing topic 2 (“2022 fifa soccer”) and
topic 5 (“nist computer security”). R stands for relevant and I stands for irrelevant.

to the phrase match “fifa soccer” (a matching score of 0.89) from the content and

URL. However, the MP-HCNN model fails to understand that “fifa soccer 11” refers

to a video game on PS3, showing the limits of a matching-based algorithm for

entity disambiguation. In contrast, though the second and third tweets look more

relevant to the query, they are assigned much lower scores by MP-HCNN. This is

because the query word “2022” is an out-of-vocabulary word, thus the impact of its

matching evidence is greatly reduced due to the random initializations of OOV word

embeddings. Comparing the second and third tweet, they share similar matching

evidence in the content while the third tweet has a higher MP-HCNN score due

to the character n-gram match “2022-fifa” in its URL. Also, it’s worth noting that

there are many terms that co-occur with “fifa soccer” in relevant tweets such as

“qatar” and “world cup”, suggesting that neural networks for term expansion can
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be promising. Since tweets 4–6 show similar patterns, I omit detailed discussions

here.

In summary, the results of these manual analyses confirm the quantitative

results from the previous sections. Exact term match remains critical to relevance

modeling, while soft matches that incorporate phrases and semantic similarities

make substantial contributions as well. Furthermore, although URLs provide a

smaller role in matching, they appear to provide complementary signals as well.

Though soft-match signals can be led astray, as the above failure analysis shows,

overall they help more than they hurt.

5.4 Conclusion

To conclude, this chapter presents, to my knowledge, the first substantial

work on neural ranking models for ad hoc retrieval on social media. I have identified

three main characteristics of social media posts that make the problem different

from “standard” document ranking over web and newswire documents. My model

is specifically designed to cope with each of these issues, capturing multiple sig-

nals from queries, social media posts, as well as URLs contained in the posts – at

the character-, word-, and phrase-levels. Extensive experiments demonstrate the

effectiveness of my model and ablation studies verify the importance of each model

components, suggesting that the customized architecture indeed captures the char-

acteristics of the domain-specific ranking challenge.
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Chapter 6: Temporal Modeling of Session Behaviors for Voice Search

6.1 Introduction

Voice-based interactions with computing devices are becoming increasingly preva-

lent, driven by several convergent trends. The ubiquity of smartphones and other

mobile devices with restrictive input methods makes voice an attractive modality for

interaction: Apple’s Siri, Microsoft’s Cortana, and the Google Assistant are promi-

nent examples. Google observed that there are more searches taking place from

mobile devices than from traditional desktops [38], and that 20% of mobile searches

are voice queries [39]. The success of these products has been enabled by advances

in automatic speech recognition (ASR), thanks mostly to deep learning.

Increasing comfort with voice-based interactions, especially with AI agents,

feeds into the emerging market on “smart homes”. Products such as Amazon Echo

and Google Home allow users to control a variety of devices via voice (e.g., “turn

on the TV”, “play music by Adele”), and to issue voice queries (e.g., “what’s the

weather tomorrow?”). The market success of these products demonstrates that

people do indeed want to control smart devices via voice.

In this paper, I tackle the problem of navigational voice queries posed against

an entertainment system, where viewers interact with a voice-enabled remote con-
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troller to specify the program (TV shows, movies, sports games) they wish to watch.

If a viewer wishes to watch the popular series “Game of Thrones”, saying the name

of the program should switch the television to the proper channel. This is simpler

and more intuitive than scrolling through channel guides or awkwardly trying to

type in the name of the show on the remote controller. Even if the viewer knows

that Game of Thrones is on HBO, finding the right channel may still be challenging,

since entertainment packages may have hundreds of channels.

The problem is challenging for a few reasons. Viewers have access to poten-

tially tens of thousands of programs (including on-demand titles), whose names can

be ambiguous. For instance, “Chicago Fire” could refer to either the television series

or a soccer team. Even with recent advances, ASR errors can exacerbate ambiguity

by transcribing queries like “Caillou” (a Canadian children’s education television

series) as “you”. In addition, I observe that voice queries are very short, which

makes the prediction problem more difficult because there is less signal to extract.

I tackle the above challenges using two key ideas to infer user intent: hybrid

query representations and modeling search sessions. Specifically, my contributions

are as follows:

• To my knowledge, this work serves the first to systematically study voice queries in

the entertainment context. I propose a technique to automatically collect ground

truth labels for voice query sessions from real-world usage data.

• My approaches model voice search sessions to understand the contextual depen-

dencies in query sequences, which are accomplished with a probabilistic frame-
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work in which recurrent and feedforward neural network modules are organized

in a hierarchical manner.

• Evaluations demonstrate the effectiveness of my context-aware models, signifi-

cantly outperforming competitive baselines. Detailed analyses clarify how my

models are better able to understand user intent.

This chapter is organized as follows: I first introduce the background of this

work in Chapter 6.2. Then I describe the model architecture in Chapter 6.3, and

present the experimental setup in Chapter 6.4 and evaluation results in Chapter 6.5.

Next, I present the deployment practice of my model into the Xfinity entertainment

platform in Chapter 6.6. Finally, I conclude this chapter in Chapter 6.7.

6.2 Background

The context of this work is voice search on the Xfinity X1 entertainment plat-

form by Comcast, one of the largest cable companies in the United States with

approximately 22 million subscribers in 40 states. X1 refers to a software package

distributed on top of Xfinity’s most recent cable box, which has been deployed to

17 million customers since around 2015. X1 can be controlled via the “voice re-

mote”, which is a remote controller that has an integrated microphone to receive

voice queries from viewers. The current deployed system is based on a combination

of hand-crafted rules and machine-learned models to arrive at a final response. The

system has a diverse set of capabilities, which increases query ambiguity and mag-

nifies the overall challenge of understanding user intent. These capabilities range
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from channel change to entity search (e.g., sports team, person, movie, etc.). In

addition, voice queries may involve general questions, from home security control

to troubleshooting the wifi network, or may be ultimately directed to external apps

such as Pandora. In this work, I focus on navigational voice queries where viewers

specify the TV program they wish to watch.

In our application, we receive as input the one-best transcription from the

ASR system. We do not have access to the acoustic signal, as the ASR system is

a black box. While it would be ideal if we could build joint models over both the

acoustic signal, transcription lattice, and user intent, in many operational settings

this is not practical or even possible. In the case of X1, the ASR is outsourced to a

third party—a scenario not uncommon in many organizations. Thus, transcription

errors compound ambiguity in the queries and make this problem harder.

This work, of course, is not the first to tackle voice search [94–98], although

to my knowledge it is the first to focus on voice queries directed at an entertain-

ment system. How is this particular domain different? The setting is obviously

different—in our case, viewers are clearly sitting in front of a television with an

entertainment intent. To compare and contrast viewers’ actual utterances, we can

turn to previously-published work that studied the characteristics of voice search

logs, especially in comparison to text search data [99–102]. Schalkwyk et al. [102]

reported statistics of queries collected from Google Voice search logs, which found

that short queries, in particular 1-word and 2-word queries, were more common in

the voice search setting, while long queries were much rarer. In contrast, a more

recent study by Guy [101] reported that voice queries tend to be longer than text
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queries, based on a half-million query dataset from the Yahoo mobile search appli-

cation. The average length across 32M voice queries is 2.04 in our dataset, much

shorter than the reported average of 4.2 for Yahoo voice search [101].

We note another important difference between our entertainment context and

voice search applications on smartphones: on a mobile device, it is common to back

off to a web search if the query intent is not identified with high confidence. Less

than half of Yahoo voice queries (43.3%) are handled by a pre-defined card [101].

While we am not aware of a scientific study about such behavior on a TV, our

intuition is that a list of search results is less useful to TV viewers than it might be

for smartphone users, since subsequent interactions are more awkward: it is difficult

for users to scroll and they have limited input methods for follow-up interactions.

Of course, this does not mean that ranking is unimportant, and my methods are

evaluated using several rank-based metrics.

My proposed approach to tackling ambiguous voice queries is to take advantage

of context in voice search sessions. The assumption is that when a viewer is not

satisfied with the results of a query, she will issue more queries in rapid succession

and continue until the desired program is found or until she gives up. In fact, we’ve

found that across 20M sessions in a week (details in Chapter 6.4.1), more than 30%

of sessions have multiple queries, accounting for over 57% of all queries. Figure 6.1

shows that more than half of the users issued at least one multi-query session in

that week.

Preliminary explorations suggest that multi-query sessions are at least in part

due to an unsatisfied user reformulating the original query. That is, sessions are long
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Figure 6.1: For each session length, I plot three values: frequency of sessions (red),
percentage of users that issued at least one session of that length (blue), and per-
centage of users with at least one unsatisfactory experience (green).

because users couldn’t find what they were looking for on the first try. Since the

deployed system does not have interaction or dialogue capabilities, we need a proxy

for measuring user satisfaction. For each session in the voice query log (details in

Chapter 6.4.1), I computed the character edit distance between every pair of queries

(normalized by the sum of query lengths) and labeled the session “unsatisfactory” if

the minimum was less than 25% (two identical queries will have a zero edit distance),

the intuition being that reformulated queries are likely to be similar. To verify, I

sampled some of these sessions and confirmed that this heuristic does indeed capture

reformulation-heavy sessions. In the dataset, over half of the users had at least one

voice session with multiple queries (blue line in Figure 6.1), and among these users,

close to 60% of them had at least one unsatisfactory experience (green line). This

rate keeps going up as the session length increases.

Initial analyses suggest that better modeling of context in multi-query sessions

may lead to an improved user experience. For example, compare two sessions:

[“ncis”, “cargo fire”, “chicago fire”] and [“espn”, “chicago sports”, “chicago fire”].

Although both end in the same query, it is fairly clear that in the first case, the viewer
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is interested in the TV drama series “Chicago Fire” (previous queries all mention

other drama series), whereas in the latter, the viewer is interested in the sports team

with the same name. Modeling context in search sessions is of course not a new idea,

and my approach is inspired by previous work in web search [132–137]. However, I

am working in a completely different domain. Building on recent advances in deep

learning applied to information retrieval [46, 91, 138, 139], I decided to implement

these ideas using neural networks.

6.3 Model Architecture

6.3.1 Problem Formulation

Given a voice query session [q1, . . . , qn], the task is to predict the program p

that the user intends to watch. The model performs this prediction cumulatively

at each time step t ∈ [1, n] on each successive new voice query qt, exploiting all

previous queries in the session, [q1, . . . , qt−1]. For example, in a three-query session

si = [qi1 , qi2 , qi3 ], there will be three separate predictions: first with [qi1 ], second with

[qi1 , qi2 ], and third with [qi1 , qi2 , qi3 ]. I sessionize the voice query logs heuristically

based on a time gap (in this case, 45 seconds—more details later), similar to how

web query logs are sessionized based on inactivity. As described above, each query

is a text string, the output of a third-party “black box” ASR system that we do not

have internal access to.

I aim to learn a mapping function Θ from a query sequence to a program
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prediction, modeled using a probabilistic framework:

Data: D = {(si, pi) | si = [qi1 , ..., qi|si| ], pi ∈ Φ}|D|1

Model: θ̂ = arg max
θ

|D|∏
i=1

|si|∏
t=1

P (pi|qi1 , ..., qit ; θ)
(6.1)

where D denotes a set of labeled sessions (si denotes the i-th session with |si|

queries), pi is the intended program for session i, Φ is the global set of programs,

and θ is the set of parameters in the mapping function Θ. The goal is to maximize

the product of prediction probabilities.

I decompose the program prediction task into learning three mapping func-

tions: a query embedding function F(x; θF), a contextual function G(x; θG), and a

classification function H(x; θH). The query embedding function F(·) takes the text

of the query as input and produces a semantic representation of the query. The con-

textual function G(·) considers representations of all the preceding queries as context

and maps them to a high-dimensional embedding vector to capture both semantic

and contextual features. Finally, the classification function H(·) predicts possible

programs from the learned contextual vector. I adopt the following decomposition:

P (pi|qi1 , ..., qit) ∼ P (pi|cit) · P (cit |vi1 , ..., vit)

· P (vi1 , ..., vit |qi1 , ..., qit)
(6.2)

where cit denotes the contextual embedding of the first t queries in the i-th session

and vit denotes the embedding of the t-th query of the i-th session. The relationship

between these embeddings can be formulated using the three mapping functions
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above: F maps a query qij to its embedding vij in vector space; G maps a sequence

of query embeddings [vi1 , ..., vit ] to a contextual embedding cit ; and H maps the

contextual embedding to a program pi:

vit ∼ F(qit ; θF), cit ∼ G(vi1 , ..., vit ; θG), pi ∼ H(cit ; θH)

1 ≤ t ≤ |si|

By assuming that each query is embedded independently, we can reduce the last

term in Equation (7.2) as follows:

P (pi|qi1 , ..., qit) = P (pi|cit) · P (cit |vi1 , ..., vit) ·
t∏

j=1

P (vij |qij)

I model the query embedding function F(·) and the contextual function G(·) by

organizing two Long Short-Term Memory (LSTM) [73] models in a hierarchical

manner. The decision function H(·) uses a feedforward neural network.

I obviate the introduction of LSTM here, but more details can be found in

Chapter 2.2.2. Given an input sequence x = (x1, ..., xT ), an LSTM model outputs a

sequence of hidden vectors h = (h1, ..., hT ). A memory cell at position t digests the

input element xt and previous state information ht−1 to produce updated state ht

using the standard LSTM equations [73]. In the following sections, we refer to the

size of the output vector h as the LSTM size.
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6.3.2 Query Representation

Since query strings serve as the sole input to my model, an expressive query

representation is essential to accurate predictions. I represent each query as a se-

quence of elements (words or characters); each element is passed through a lookup

layer and projected into a d-dimensional vector, thereby representing the query as

an m × d matrix (m is the number of elements in the query). I consider three

variations of this representation:

(1) Character-level representation, which encodes a query as a sequence of

characters and the lookup layer converts each character to a one-hot vector. In this

case, m would be the number of characters in the query and d would be the size of

the character dictionary of the entire dataset.

(2) Word-level representation, which encodes the query as a sequence of

words, and the word vectors are read from a pre-trained word embedding, e.g.,

word2vec [12]. In this case, d would be the dimensionality of the word embedding.

(3) Combined representation, which combines both the character-level and

word-level representations by feeding the representations to two separate query em-

bedding functions Fc and Fw, respectively, and then concatenating the two learned

vectors vc and vw as the combined query embedding vector.

My intuition for these different representations is as follows: Based on my query log

analysis, I observe many unsatisfactory responses due to ASR errors. For example,

voice queries intended for the program “Caillou” (a Canadian children’s education

television series) are often recognized as “Cacio” or “you”. Capturing such variations
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Figure 6.2: Architecture of the Basic Model.

with a word-level representation would likely suffer from data sparsity issues. On the

other hand, initializing a query through word embedding vectors would encode words

in a semantic vector space, which would help in matching queries to programs based

on semantic relatedness (e.g., the query “Portland Trail Blazers” is semantically

similar to the intended program “NBA basketball” without any words in common).

Word embeddings are also useful for recognizing semantically-similar contextual

clues such as “Search”, “Find” or “Watch”. With a character-level representation,

such similarities would need to be learned from scratch. Whether the benefits of

either representation balance its drawbacks is an empirical question I study through

experiments, but I expect that a combined representation can capture the best of

both worlds.
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6.3.3 Basic Model

In the basic context-independent model, queries in a session are assumed to

be independent and thus I do not attempt to model context. That is, each query

is treated as a complete sample for model inference and prediction. The mapping

function Θ from query to program in Equation (7.1) can be simplified as follows:

Θ ∼ arg max
θ

|D|∏
i=1

|si|∏
t=1

P (pi|qit)

= arg max
θ

|D|∏
i=1

|si|∏
t=1

P (pi|vit)P (vit |qit)

(6.3)

vit ∼ F(qit ; θF), pi ∼ H(vit ; θH), 1 ≤ t ≤ |si|

Here, the program pi is only dependent on the current query qit . The contextual

function G(·) is modeled as an identity function since there is no context from the

assumption.

The architecture of the basic model is shown in Figure 6.2. In the bottom, I

use an LSTM as the query embedding function F(·). The text query is projected

into an m× d dimensional matrix through the lookup layer, then fed to the LSTM,

which has m memory cells and each cell processes an element vector. The hidden

state at the last time step hm is used as the query embedding vector v. At the

top, there is a fully-connected layer followed by a softmax layer for learning the

classification function H(·). The fully-connected layer consists of two linear layers

with one element-wise activation layer in between. Given the query embedding
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vector v as input, the fully-connected layer computes the following:

l2 = Wh2 · σ(Wh1 · v + bh1) + bh2

where the W terms are the weight matrices and the b terms are bias vectors. I

use the tanh function as the non-linear activation function σ, which is commonly

adopted in neural network architectures. The softmax layer normalizes the vector

l2 to an L1 norm vector o, with each output score o[pj] denoting the probability of

producing program pj as output:

o[pj] =
exp(l2[pj]− shift)∑|Φ|
pk=1 exp(l2[pk]− shift)

where shift = max
|Φ|
pk=1 l2[pk], |Φ| is the total number of programs in the dataset.

I adopt the negative log-likelihood loss function to train the model, which is

derived from Equation (6.3):

L = −
|D|∑
i=1

|si|∑
t=1

logP (pi|qit) + λ · ‖〈θF, θG, θH〉‖2

= −
|D|∑
i=1

|si|∑
t=1

log oit [pi] + λ · ‖〈θF, θG, θH〉‖2

where oit is the score vector computed from query qit and pi is the true program

for session i; λ is the regularization weight and 〈θF, θG, θH〉 is the set of model

parameters. The optimization goal is to minimize the loss criterion L.

The training process is shown in Algorithm 1. The overall structure is to iter-
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Algorithm 1 Training the Basic Model
1: for each session si in the dataset i = 1...|D| do
2: for each query qit in session si with t = 1...|si| do
3: . Forward Prediction Start
4: eit = encode(qit)
5: h1,...,m = LSTM:forward(eit)
6: l2 = FC:forward(hm)
7: o = softmax:forward(l2)
8: loss = criterion:forward(o, pi)
9: . Backward Propagation Start

10: grad criterion = criterion:backward(o, pi)
11: grad soft = softmax:backward(l2, grad criterion)
12: grad linear = FC:backward(hm, grad soft)
13: grad lstm = zeros(m, lstm size)
14: grad lstm[m] = grad linear
15: LSTM:backward(eit, grad lstm)
16: update parameters()
17: end for
18: end for

ate over each query in all sessions to perform the forward prediction and backward

propagation operations. The forward phase follows the model architecture in Fig-

ure 6.2. A query is first encoded as a matrix in Line 4 by specifying the encoding

method (i.e., character, word, or combined). Lines 5 and 6 feed the input matrix to

the LSTM and fully-connected (FC) layer sequentially. In the backward phase, each

module requires the original inputs and the gradients propagated from its upper

layer to compute the gradients with respect to the inputs and its own parameters.

It is worth noting that in Lines 13-15 the gradients grad lstm are initialized to zero

for the first m − 1 cells. This is because in the forward phase, I only use the last

LSTM state hm as the query embedding vector for the upper layers. Line 16 per-

forms gradient descent to update model parameters. All the forward and backward

functions used here are written as black box operations, and interested readers can

refer to Goodfellow et al. [140] for more details.
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Figure 6.3: Architecture of the Full Context Model.

6.3.4 Full Context Model

I propose two approaches to model context: the full context model (presented

here) and the constrained context model (presented next). The architecture of the

full context model is shown in Figure 6.3, which uses the basic model as a building

block. I use another LSTM (the dotted rectangle in the middle of Figure 6.3)

to learn the contextual function G(v1, ..., vt; θG). Previous query embedding vectors

[v1, ..., vt−1] are encoded as a context vector ct−1, which is combined with the current

query embedding vector vt and fed to the LSTM memory cell at time t. This

allows the LSTM to find an optimal combination of signals from prior context and

the current query. For sessions with a single underlying intent (i.e., the user is

consistently looking for a specific program), the model can learn the relatedness

between successive queries and continuously reinforce confidence in the true intent.
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In reality, context is sometimes irrelevant, which might introduce noise. When the

context diverges too much from the current query embedding, the model should be

able to ignore the noisy context signals to reduce their negative impact.

I adopt a many-to-many hierarchical architecture. The query embedding layer

F(·) and the classification layerH(·) are applied to each query for program prediction

at each time step t. We hope to find the true user intent as early as possible to

reduce interactions between the user and our product. The parameters of the query

embedding layer F(·), as well as the classification layer H(·), are shared by all

queries regardless of their position in the session. For instance, two identical queries

with different positions in a session will have the same query embedding vector.

Except for the contextual layer G(·), all other modules (e.g., query embedding,

fully-connected layer, softmax layer, loss function) remain the same as in the basic

(context-independent) model.

The training process for this model (Algorithm 2) starts with forward predic-

tions for multiple queries in the session (Lines 2-7). Similar to Algorithm 1, only

the last LSTM state hm is selected as the query embedding vector (Line 6). Since

sessions can have a variable number of queries, I dynamically clone a new LSTM

to ingest the query at time t (i.e., LSTM[t] in Line 5) when the arriving query re-

sults in a longer session than all previously seen sessions. Line 8 utilizes another

LSTM model to compute the context from sequential query embeddings. Lines 9-18

perform forward predictions and backward propagations for multiple queries in the

classification layer. The queries are processed in a sequential manner such that for

each query all forward operations are immediately followed by all backward opera-
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Algorithm 2 Training the Full Context Model
1: for each session si in the dataset i = 1...|D| do
2: v = zeros(|si|, lstm size) . query embedding vectors
3: for each query qit with t = 1...|si| do
4: eit = encode(qit)
5: h1,...,m = LSTM[t]:forward(eit)
6: vt = hm
7: end for
8: c1,...,|si| = C LSTM:forward(v1,...,|si|) . contextual vectors
9: grad linear = zeros(|si|, lstm size)

10: for each query qit with t = 1...|si| do
11: l2 = FC:forward(ct)
12: o = softmax:forward(l2)
13: loss = criterion:forward(o, pi)
14: session loss = session loss + loss
15: grad criterion = criterion:backward(o, pi)
16: grad soft = softmax:backward(l2, grad criterion)
17: grad linear[t] = FC:backward(ct, grad soft)
18: end for
19: grad context = C LSTM:backward(v1,...,|si|, grad linear)
20: for each query qit with t = 1...|si| do
21: grad lstm = zeros(m, lstm size)
22: grad lstm[m] = grad context[t]
23: LSTM[t]:backward(eit , grad lstm)
24: end for
25: update parameters()
26: end for

tions before moving to the next query. Lines 19-24 propagate the gradients through

the contextual and embedding LSTMs. Line 25 updates model parameters for each

session by optimizing the session loss in Line 14.

It is important to note that the prediction task is applied at the query level: my

model tries to predict the program after each query in the session. The alternative

is to optimize for program prediction given all queries in the session—this is a much

easier task, since the entire session has been observed. However, it defeats the

purpose of the initial setup since we wish to satisfy viewer intents as quickly as

possible.
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6.3.5 Constrained Context Model

Finally, I explore a variant called the constrained context model. The model

architecture is the same as the full context model (Figure 6.3). The difference,

however, lies in how we learn the model. For the constrained context model, I adopt

a pre-training strategy as follows: I first train the basic model (Algorithm 1) and

then use the learned LSTM parameters to initialize the constrained context model’s

query embedding layer. The embedding layer is then fixed and purely used for

generating query embeddings. That is, Lines 20-24 are removed from Algorithm 2.

The intuition behind this model is to restrict the search space during model

training, aiming to reduce the complexity of optimization compared to the full

context model. Whether this reduction in optimization complexity is beneficial to

the prediction task is an empirical question I study in the following sections.

6.4 Experimental Setup

6.4.1 Data Preparation

I collected voice queries submitted to Xfinity X1 remote controllers during the

week of Feb. 22 to 28, 2016, a total of 32.3M queries from 2.5M unique viewers.

Based on preliminary analyses, I selected 45 seconds as the threshold for dividing

successive queries into sessions, yielding 20.0M sessions.

To build a training set for supervised learning, we need the true user intent

for each session. I automatically extracted noisy labels by examining what the
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viewer watched after the voice session; this exactly parallels inferring user intent

from clickthrough data in the web domain. If the viewer began watching a program

p at most K seconds after the last query in the voice session v and kept watching

it for at least L seconds, I label the session with p. The selection of K and L

represents a balance between the quantity and quality of collected labels. After

some initial exploration, I set K to 30 seconds and L to 150 seconds, which yields a

good balance between data quantity and quality (based on manual spot-checking).

Using these parameters, I extracted 13.0M session-program pairs. These sessions

contain mixed modalities, as in reality users navigate with a combination of voice

queries and keypad entry.

Without any further processing, these voice queries might reflect arbitrary

intent (e.g., “closed caption on”, “the square root of eighty one”, or “change to

channel 36”). In order to limit ourselves to voice sessions with a single clear intent,

I used two heuristics as follows: First, I define a way to reliably predict whether a

query is program-related (i.e., the query is primarily associated with a TV series,

movie, video, or sports program). This is obtained from the deployed X1 platform,

which categorizes every query into one of many action types based on existing hand-

crafted patterns and partial string matching. A query is program-related if it is

categorized as one of the following: {SERIES, MOVIE, MUSICVIDEO, SPORTS}.

Based on this knowledge, I restricted the data to sessions in which over 2/3 of queries

are program-related and the final query in the session is also program-related. Since

channel changes are a large portion of the data, this reduces the number of labeled
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pairs to 2.1M.1

Second, I computed the normalized edit distance between each query pair in

the session, and kept only those sessions where any pair of queries has a distance

less than 0.5. The goal here is to ensure that there is at least some cohesion in the

sessions. This heuristic has a relatively minor effect: the resulting filtered dataset

contains 1.96M sessions in total.

Naturally, data pre-processing plays an important role in any problem setup,

and one might wonder if the above heuristics might generate a dataset that favors

my proposed approach. This is unlikely because the data filtering is a function of

two independent decisions: (i) the action types are chosen by the currently-deployed

system, and (ii) viewing behaviors after the voice sessions are purely dependent on

users. Both decisions are unrelated to my methods. Furthermore, as we are ulti-

mately interested in improving the production system, it is only natural to bootstrap

off existing log data, much like the development of web search.

From this data, I sampled five splits: a training set used in all experiments, and

two groups of development and test sets. The first development and test sets contain

only single-query sessions, called SingleDev and SingleTest. These are used to study

whether the context-based models hurt accuracy in sessions without context. The

second group contains only multiple-query sessions (i.e., at least two queries in each

session), called MultiDev and MultiTest. To build the global set of programs Φ, I

only kept a program if there are at least 50 associated sessions in the training set,

1Although channel changes can be handled like programs, I decided to ignore them due to
the additional complexity of regional variations (e.g., HBO West and HBO East are two different
channels and cannot be disambiguated solely based on the query).
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Dataset sessions queries avg. session len avg. query len
Train 126016 181058 1.44 2.34
SingleDev 24792 24792 1.00 2.40
SingleTest 24572 24572 1.00 2.36
MultiDev 28427 82828 2.91 2.30
MultiTest 28173 82272 2.92 2.30

Table 6.1: Dataset statistics.

yielding 471 programs that account for 77.8% of all the viewing behaviors of the

1.96M filtered sessions during that week. Statistics for each of the splits after all

pre-processing are summarized in Table 7.2.

6.4.2 Model Training

In total, we have three options for query representation, char, word, and com-

bined (Chapter 6.3.2), and three options for the model, basic, full context, and

constrained context (Chapters 6.3.3-6.3.5). Therefore, we have a total of nine ex-

perimental settings, by crossing the three representations with the three models.

The entire dataset contains 80 distinct characters in total, which means that

the size of the one-hot vector used in the char setting is 80. For the word represen-

tation, I used 300-dimensional GloVe word embeddings [118] to encode each word,

which is trained on 840 billion tokens and freely available. The word vocabulary of

the dataset is 20.4K, with 1759 words not found in the GloVe word embeddings. Un-

known words were randomly initialized with values uniformly sampled from [-0.05,

0.05].

During training, I used the stochastic gradient descent algorithm together with

RMS-PROP [141] to iteratively update the model parameters. The learning rate was
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initially set to 10−3 and then decreased by a factor of three when the development set

loss stopped decreasing for three epochs. The maximum number of training epochs

was 50. For the constrained context model, the number of pre-training epochs was

selected as 15. The output size of the LSTMs was set to 200 and the size of the

linear layer was set to 150. The regularization weight λ was chosen as 10−4. At test

time, I selected for evaluation the model that obtained the highest P@1 accuracy

on the development set. My models were implemented using the Torch framework.

I ran all experiments on a server with two 8-core processors (Intel Xeon E5-2640 v3

2.6GHz) and 1TB RAM, with each experiment running on 6 CPU threads.

6.4.3 Baselines

My methods were compared against the following baselines:

TF-IDF/BM25: I built a 3-gram (character-level) inverted index of the program

set Φ. During retrieval, the matching score is computed on 3-gram overlaps between

query and programs using TF-IDF or Okapi BM25 weighting (k1 = 1.2, b = 0.75).

Learning-to-rank SVMrank [142]: I first used BM25 to retrieve at most 20 can-

didate programs per query, then designed three types of features for each pair of

query and candidate program: (1) BM25 score, (2) max/mean/min value of cosine

similarities between word embeddings of the query and the candidate program, and

(3) popularity score of the candidate program.

DSSM [11]: This neural ranking model for web search uses word hashing to model

interactions between queries and programs at the level of character 3-grams. This
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method is an appropriate baseline for the problem since it can handle ASR tran-

scription errors, unlike neural ranking models based on word matching [10,46,91].

DSSM+S: I train and evaluate DSSM by concatenating queries in one session with a

special boundary token between neighboring queries. This variant can be considered

a context-aware baseline, where I aim to study whether simple concatenation is able

to capture context signals in a session.

Basic: I applied the basic model described in Chapter 6.3.3 with character-level,

word-level, and combined representations.

Basic+S: Same as above, with a concatenated query representation.

6.5 Experimental Results

I used four metrics in the evaluation, averaged over all queries: precision at

one (P@1), precision at five (P@5), Mean Reciprocal Rank (MRR), and Query

Reduction (QR). The first three are standard retrieval metrics and don’t require

an explanation. QR is a measure of how many queries a viewer has “saved” in a

session. For a session with n queries, the number of reductions is n− i if the model

returns the correct prediction at the i-th query, which means that the viewer does

not need to issue the next n − i queries, hence a reduction of n − i. I average this

metric over all sessions.

There are few important questions the experiments are designed to answer:

First, how do my proposed models compare against lexical overlap, a learning-to-

rank baseline, and an existing neural ranking model? Second, within my model,
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ID Model Query P@1 P@5 MRR
1 TF-IDF 3-gram 0.89510 0.93710 0.92310

2 BM25 3-gram 0.9071,10 0.93910 0.92710

3 SVMrank - 0.9171,2,10 0.9511,2,10 0.9331,9

4 DSSM 3-gram 0.9181,2,10 0.9491,10 0.9311,10

5 DSSM+S 3-gram 0.9161,10 0.9491,10 0.9361,10

6 Basic char 0.9441-5,9,10 0.9531,2,9,10 0.9621-5,10

7 Basic word 0.9431-5,9,10 0.9531,2,9,10 0.9621-5,10

8 Basic comb 0.9471-5,9,10 0.9551,2,9,10 0.9641-5,10

9 Basic+S comb 0.9231,2,10 0.93810 0.9531-5,10

10 Context-f char 0.753 0.794 0.837
11 Context-f word 0.9261,2,10 0.94210 0.9591-5,10

12 Context-f comb 0.9321,2,10 0.94710 0.9671-5,9

13 Context-c char 0.9381-5,9,10 0.9501,9,10 0.9631-5,10

14 Context-c word 0.9431-5,9,10 0.9501,9,10 0.9611-5,10

15 Context-c comb 0.9441-5,9,10 0.9531,2,9,10 0.9631-5,10

Table 6.2: Model effectiveness on single-query sessions. The second column denotes
the model: baselines compared to the basic, full context (Context-f), and constrained
context (Context-c) models. The third column indicates the query representation.
Remaining columns show evaluation metrics. Superscripts indicate the row indexes
for which a metric difference is statistically significant at p < 0.01. Rows are num-
bered in the first column for convenience.

which is the most effective query representation (character, word, or combined)?

Finally, what are the important differences between single query and multiple-query

sessions, and which is the most effective context model: ignoring context, query

concatenation, full context, or constrained context?

Results for the single-query and multiple-query sessions, on the SingleTest and

MultiTest splits, respectively, are shown in Table 6.2 and 6.3. Each row represents an

experimental condition (numbered for convenience). The second column specifies

the model: “Context-f” and “Context-c” denote the full and constrained context

models, respectively. The third column indicates the query representation (char,

word, or combined), and the remaining columns list the various evaluation metrics.

Superscripts indicate the row indexes for which a metric difference is statistically
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significant (p < 0.01) based on Fisher’s two-sided, paired randomization test [1]. A

dash symbol “-” connecting two indices “a-b” is shorthand for a, . . . , b.

Let’s first consider the non-context baselines (numbered 1–4 and 6–8): TF-

IDF and BM25 achieve fairly high accuracies (P@1 of 0.895 and 0.907) on single-

query sessions. The effectiveness of these two simple baselines is not surprising, since

single-query sessions are by construction the “easy queries” in which users reach their

intended program in only a single voice query (but may include keypad navigation).

The SVMrank predictor achieves better accuracy than the BM25 baseline because

it also takes advantage of word embeddings to consider semantic relatedness as

well as the popularity priors of programs in a supervised setting. DSSM achieves

comparable performance to the SVMrank approach, significantly outperforming both

TF-IDF and BM25. We also notice that the basic (context-independent) model

outperforms DSSM by quite a bit. I identified two main reasons: (1) There are

about 2% sports-related queries in which the user searched for a particular sports

team (e.g., “Detroit Red Wings”) but ended up watching a program (e.g., “NHL

Hockey”) that shares no common 3-grams with the query; (2) Major ASR errors

sometimes results in very little lexical overlap between the query and the intended

program title (e.g., “Dr. Seuss’s The Lorax” is transcribed as “The Laura”).

Turning our attention to non-context models on the multiple-query sessions in

Table 6.3, we see that accuracy drops significantly compared to single-query sessions.

The relative effectiveness of the various methods is consistent, but we observe a

much wider range of prediction accuracy separating the simple methods (TF-IDF

and BM25) from the more sophisticated models (DSSM and the basic model). These
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ID Model Query P@1 P@5 MRR QR
1 TF-IDF 3-gram 0.51810 0.59310 0.54310 0.93210

2 BM25 3-gram 0.5331,10 0.59610 0.5651,10 0.9471,10

3 SVMrank - 0.5471,2,10 0.6211,2,10 0.5821,2,10 0.9621,2,10

4 DSSM 3-gram 0.5681,2,3,10 0.6171,2,10 0.5841,2,10 1.0011,2,3,4,10

5 DSSM+S 3-gram 0.5501,2,10 0.6181,2,10 0.5761,2,10 0.9721,2,10

6 Basic char 0.6051-5,10 0.6471-5,10 0.6901-5,10 1.1081-5,10

7 Basic word 0.6091-5,10 0.6441-5,10 0.6771-5,10 1.0861-5,10

8 Basic comb 0.6141-5,9,10 0.6511-5,10 0.6871-5,10 1.1131-5,9,10

9 Basic+S comb 0.5961-5,10 0.6451-5,10 0.6971-5,10 1.0611-5,10

10 Context-f char 0.482 0.532 0.5801 0.856
11 Context-f word 0.5991-5,10 0.6381-5,10 0.6871-5,10 1.0751-5,10

12 Context-f comb 0.5981-5,10 0.6431-5,10 0.6881-5,10 1.0391-5,10

13 Context-c char 0.6391-12 0.6841-12 0.7311-12 1.1171-7,9-12

14 Context-c word 0.6391-12 0.6831-12 0.7291-12 1.1121-7,9-12

15 Context-c comb 0.6431-12 0.6871-12 0.7341-12 1.1281-12

Table 6.3: Model effectiveness on multiple-query sessions. The second column de-
notes the model: baselines compared to the basic, full context (Context-f), and
constrained context (Context-c) models. The third column indicates the query rep-
resentation. Remaining columns show evaluation metrics. Superscripts indicate the
row indexes for which a metric difference is statistically significant at p < 0.01.
Rows are numbered in the first column for convenience.

results suggest that neural network models are able to better capture signals beyond

lexical overlap and the few other manually-defined features I employed.

For the first question, we observe that in the basic and constrained context

models, the word-level query representation is quite close to the character-level query

representation. However, in nearly all conditions, across nearly all metrics, the com-

bined condition further improves (albeit only slightly) upon both representations,

which shows that character-level and word-level representations provide signals that

supplement each other.

In terms of the context models, the constrained context model significantly

outperforms all others, including the basic, query concatenation, and full context

models. We observe that query concatenation hurts the effectiveness of the DSSM

and basic models. From the output logs, I find that query concatenation is less
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robust to noise in the session data, both at training and at inference time. For

example, consider sessions beginning with a general-purpose query such as “Find me

all free movies on demand”: the context of all subsequent queries will be “polluted”

by irrelevant information, from which the model might not be able to recover.

In contrast, modeling query dependencies through an LSTM model is more

effective. Since the context models copy their query embedding layers from the ba-

sic models, we conclude that the upper LSTM layer is able to capture contextual

information to improve prediction. Note that the full and constrained models share

exactly the same architecture; the only difference lies in whether or not we back-

propagate to the query embedding layer during training—the constrained model is

designed to restrict the model search space. The effectiveness gap on the multiple-

query session dataset (0.599 vs 0.643) demonstrates that the query embedding layer

obtained by the constrained context model through pre-training is of higher quality.

This is likely due to insufficient data for the full context model to effectively learn

parameters for both LSTM levels. However, a caveat: it is conceivable that with

even more training data, the full context model will improve. But as it currently

stands, the constrained context model displays a better ability to exploit contextual

information for predicting viewers’ intent. Overall, for the multiple-query sessions,

the constrained model with the combined representation yields a 21% relative im-

provement over BM25 and 13% over DSSM in terms of P@1.

For single-query sessions, we want to make sure that the context models do

not “screw up” these queries. I confirm that this is indeed the case. It is no surprise

that the basic model performs the best on single-query sessions: since there is no
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context to begin with, all the “contextual machinery” of the richer models can

only serve as a distraction. I find that the constrained model with the combined

representation (best condition above) still performs well—slightly worse than the

basic model with the combined representation, although the differences are not

statistically significant. It is also interesting to note that the full context model

with the character representation is terrible, suggesting that the search space is

too large given the combination of longer query representations and session-level

optimization.

6.5.1 Context Analysis

To better understand how my models take advantage of context, I focused on

multiple-query sessions and examined how accuracy evolves during the course of a

session. Results are shown in Figure 6.4. The leftmost plot shows the histogram of

session lengths (i.e., number of queries in each session) in the MultiTest split; each

bar is annotated with the actual count. In Figures 6.4(b)-(d), I show the average

P@1 score from MultiTest at different positions in the session (on the x axis), i.e., at

the first query in the session, the second query, etc. For illustrative purposes I focus

on “short” sessions with a length of three (8441 sessions), “medium” sessions with a

length of six (850 sessions), and “long” sessions with a length of nine (157 sessions).

For clarity, in all cases the models used the combined query representation.

We observe several interesting patterns in Figures 6.4(b)-(d). First, for the

non-context models (SVMrank, DSSM, and basic), the accuracy stays flat until the
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Figure 6.4: Context analysis of the multiple-query session (MultiTest) test set. The
leftmost plot shows the distribution of session lengths. Subfigures (b)-(d) show the
average P@1 score at different positions (i.e., the i-th query) in the session.

final query (except small fluctuations due to noise). Accuracy for the final query

rises significantly because the viewer finally found what she was looking for (and thus

is likely to be an “easy” query). Also, we can see that DSSM with the concatenated

query representation (DSSM+S) is not able to capture context clues in the sessions,

illustrated by a curve as flat as the non-context models. The Basic+S model is

interesting: At the beginning of sessions, it is able to outperform the basic model,

yet its effectiveness degrades as the session progresses. At the end of sessions, it is

consistently worse than the basic model. This suggests that simple concatenation is

prone to accumulating too much noise during longer sessions, eventually outweighing
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the benefits of having context. However, for the context-aware models (Context-f

and Context-c), we observe a consistent increase in the accuracy curves as the session

progresses. This demonstrates that the LSTM model is able to better capture

context signals in the sessions, and as the model accumulates more context, it can

better identify the user’s true intent. The constrained context model performs about

the same as the basic model at the first query (where there is no context) and the

final query (which is easier since the viewer found the desired program). However,

the constrained context model outperforms the basic model in the middle of sessions,

highlighting the ability of the LSTM to capture context.

In Table 6.4, I provide two real example sessions to illustrate how each model

responds to the sequence of viewer queries. The session is shown in the first row,

where each query is separated by a colon. The second row shows the viewer’s intent

(i.e., ground truth label). The remaining rows show the output of each model; due

to space limitations, I only show the top predictions along with their confidence

scores for my models. Each prediction in the sequence is also separated by a colon.

To save space, I use the symbol ? to indicate that the prediction is correct.

In the first example (left), the viewer is consistently looking for the program

“Caillou”, but the production system fails three times in a row due to ASR er-

rors. For the first three queries, all models based on n-gram matching fail (BM25,

SVMrank, DSSM, DSSM+S) because there is no 3-gram overlap between the queries

and the intended program. For my models, both the basic/char and Context-c/char

models can predict the correct program from the query “Cacio” with high confi-

dence. However, models with word-level representations all fail for this query. This
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Session Cacio : You : You : Caillou Sienna cover : Color : Casey undercover
Program Caillou K.C. Undercover
Model Query Example 1 Example 2
BM25 - Pacific Rim : Now You See Me : Now You See Me : ? Recovery Road : College Basketball : ?
SVMrank - Pacific Rim : Now You See Me : Now You See Me : ? Recovery Road : Dora the Explorer : ?
DSSM 3-gram Pacific Rim : Young : Young : ? ? : College Basketball : ?
DSSM+S 3-gram Pacific Rim : The Young and the Restless : The Young and the Restless : ? ? : College Basketball : ?
Basic char ? (0.81) : ? (0.80) : ? (0.80) : ? (1.0) ? (0.76) : Carolina (0.07) : ? (0.99)
Basic word Child Genius (0.03) : ? (0.57) : ? (0.57) : ? (1.0) Recovery Road (0.48) : ? (0.08) : ? (0.75)
Basic comb Paw Patrol (0.17) : ? (0.83) : ? (0.83) : ? (1.0) ? (0.37) : Magic Mike XXL (0.31) : ? (0.98)
Basic+S comb Paw Patrol (0.15) : Paw Patrol (0.25) : ? (0.75) : ? (0.98) ? (0.34) : ? (0.20) : ? (0.85)
Context-f char Lego Ninjago (0.30) : ? (0.79) : ? (0.90) : ? (0.99) ? (0.43) : ? (0.67) : ? (0.89)
Context-f word Paw Patrol (0.30) : ? (0.62) : ? (0.98) : ? (1.0) ? (0.29) : ? (0.65) : ? (1.0)
Context-f comb Lego Ninjago (0.03) : ? (0.60) : ? (0.98) : ? (1.0) ? (0.41) : ? (0.54) : ? (0.99)
Context-c char ? (0.96) : ? (0.99) : ? (0.99) : ? (1.0) ? (0.81) : ? (0.96) : ? (0.99)
Context-c word Wallykazam (0.07) : ? (0.59) : ? (0.86) : ? (1.0) ? (0.89) : ? (0.80) : ? (1.0)
Context-c comb Paw Patrol (0.17) : ? (0.93) : ? (1.0) : ? (1.0) ? (0.65) : ? (0.83) : ? (0.97)

Table 6.4: Two sample sessions and top predictions for each model. Each query
and prediction in the session is separated by a colon. For each prediction from
my models, I show the confidence score. ? indicates that the model response was
correct.

is no surprise as the word “Cacio” is a rare mis-transcription of the word “Caillou”

and thus rarely seen in the training set. For the next two successive queries “You”,

the basic models are able to succeed with high confidence scores. However, the Ba-

sic+S model remains mistaken after the first occurrence of “You”, suggesting that

concatenation with the previous query “Cacio” serves as a distractor. For both the

full and constrained context models, confidence for the second query “You” is higher

(thanks to context). This is an example of how contextual clues help, confirming

our intuition. Since the second example behaves similarly, I omit a description for

space consideration.

6.5.2 Efficiency Analysis

The final set of experiments examined efficiency in terms of training time

and prediction latency, both important consideration for production deployments.

Results are shown in Table 6.5. For each setting in the first two columns, “#Params”

shows the total number of parameters in the model, “Training” denotes the training
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time for each epoch, and “Test” shows the prediction latency per query. “Avg.” and

“Conf.” indicate the average value and the 95% confidence interval of training/test

times over 30 epochs. Overall, the training time of all models is less than around 100

minutes per epoch, and the per-query prediction latency is less than 8 milliseconds.

Most model configurations converge in the first 20 epochs.

Comparing different query representations, we observe that combined has the

most number of parameters and was also the slowest to train and test; this is no

surprise. For the character-level representation, the size of the one-hot vectors is

smaller, resulting in fewer parameters at the query embedding layer. However, the

number of characters in a query is much larger, leading to longer training times.

With the same query representation, the full context models have more parame-

ters and take longer to train than the corresponding basic and constrained context

models, as expected. The constrained context models have the same number of pa-

rameters and similar prediction latencies as the full context models since they share

the same architecture. However, the constrained context models are much faster to

train, suggesting that most of the training effort is spent on the query embedding

layer in the full context models.

I plot training loss and testing accuracy curves in Figure 6.5: (a) shows the

training loss curve as a function of epoch, (b) shows the P@1 curve in the MultiTest

set at each epoch. The symbol N denotes the epochs where the learning rate was

divided by three because development loss had not decreased for three epochs. We

see that most models converged within 20 epochs. In the basic and full context

models, the char representation took longer to converge than word or combined,
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Training (min) Test (ms)
Model Query #Params Avg. Conf. Avg. Conf.
Basic char 326,871 62.1 [59.7, 64.7] 6.4 [6.2, 6.6]
Basic word 502,871 32.6 [32.2, 33.0] 3.0 [3.0, 3.1]
Basic comb 758,471 94.5 [91.4, 97.2] 6.9 [6.6, 7.0]
Context-f char 648,471 72.1 [68.4, 74.5] 6.6 [6.4, 7.0]
Context-f word 824,471 58.8 [57.2, 60.8] 4.0 [4.0, 4.1]
Context-f comb 1,210,071 102.4 [100.8, 103.8] 7.0 [6.8, 7.2]
Context-c char 648,471 32.1 [30.9, 33.7] 6.6 [6.4, 6.8]
Context-c word 824,471 30.1 [29.5, 31.2] 4.0 [3.9, 4.1]
Context-c comb 1,210,071 42.5 [41.8, 43.1] 6.9 [6.8, 7.0]

Table 6.5: Model efficiency: Column “Training” shows the training time per epoch
and “Test” shows prediction latency per query. “Avg.” indicates the average value
of training/test times, and “Conf.” indicates the 95% confidence interval.
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Figure 6.5: Training loss and testing accuracy for each epoch; N denotes epochs
where the learning rate was reduced.

which shows that a character-level representation is more difficult to learn. It is also

interesting that the gap in training loss between the basic and full context models

is larger than the gap in test accuracy, which means that although the full context

model is difficult to train, the benefit of context enables it to generalize well. The

constrained context model walks a middle ground in terms of model complexity and

the ability to capture context information, leading to both lower training loss and

higher test accuracy.

162



6.6 Production Deployment

Following the above promising laboratory experiments, I collaborated with

the engineering team in Comcast and packaged the constrained context model with

word-level inputs, which we term as HRNN in abbreviation of hierarchical recurrent

neural network model, into a standalone software module that was deployed into

production as part of the X1 software package on January 5, 2018. In this section,

I describe deployment details and lessons learned from the first month of live traf-

fic. Our experience provides a case study of technology transfer from research into

production, detailed in my previous KDD paper [41].

6.6.1 Implementation Details

To balance efficiency, effectiveness, and coverage, my model was deployed in

production as part of a cascade, where the HRNN module was run after a number of

simpler NLP modules (based on pattern matching and some machine-learned com-

ponents). A cascade architecture has several advantages: While it would have been

possible to run the HRNN in parallel with the existing modules, this setup intro-

duces a new ensemble selection problem that complicates deployment. Since we are

introducing completely new technology (this is the first neural network model that

has been deployed in production), we adopted a conservative approach to minimize

adverse effects. Because the HRNN is placed at the end of the cascade, it is given

queries that would have otherwise gone unhandled (more details below). Finally, a

cascade deployment allows us to control query latencies and bring richer models to
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bear only when they are needed (e.g., there is no need to run a deep neural network

to respond to the query “CNN”). This is similar in spirit to cascade architectures

for ranking [143].

Implemented in Keras with the TensorFlow backend, my model has over 17M

parameters, 15M of which come from the embedding matrix. The model is serialized

into a 69 MB file and deployed as part of a Docker image. Inference for a single

query takes around 70ms on a GPU server (Tesla M60 GPU, Xeon E5-2643 v4 CPU),

while latency increases to 750ms on a server with a single Xeon E5-2660 v3 CPU.

Since feedforward inference is embarrassingly parallel, we can scale up easily by load

balancing across an arbitrary number of servers to obtain the desired throughput.

At peak load, we use a small cache to skip model inference for the most frequent N

queries, which lowers average latency considerably.

6.6.2 Query Coverage

Before we deployed the HRNN, the production system was unable to produce

any response for 8% of all queries—in this case, the customer sees a special “cannot

handle this query” message. Thus, the queries given to my model are the most

difficult queries by construction. A manual analysis revealed numerous challenges:

speech recognition errors, references to brand new programs, ambiguous intent, or

even complete gibberish. By deploying my HRNN as the last step of the cascade, we

hoped to handle as many of these queries as possible without making too many mis-

takes. As an additional control mechanism, we implemented a confidence threshold,
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so that if the model confidence (output of the softmax layer) is below this value, the

HRNN does not return any response. This threshold, which was hand tuned, allows

us to trade off coverage for precision.

After deployment, we monitored logs in the week from January 27 to February

2, 2018: the complete system received 70.1M queries, 5.7M of which (8%) were sent

to the HRNN, the last step of the cascade. Among these 5.7M queries (for which

the viewer would have gotten an error message previously), the model confidence

was above the threshold for 4.2M (6%). In other words, the HRNN received 8% of

the total traffic and responded to 6%; for the remaining 2%, my model chose not

to handle the query, and the platform resorted to the existing behavior (displaying

the error message).

Figure 6.6 shows the breakdown of per-module query coverage. The main

pattern-based module is shown at the top (yellow) and the HRNN is shown in orange

at the bottom. A few other specialized modules (sports, events, trivia questions,

etc.) can be seen as small slivers. After the HRNN was deployed, unhandled queries

(purple) gradually turned orange. The HRNN quickly became the second most

impactful module in the production system.

Based on this, we can conclude that the coverage of the HRNN module is 74%

(4.2M/5.7M). The coverage of the entire end-to-end system increased from 92% to

98% after deployment. In other words, the HRNN dramatically increased coverage,

reducing the number of unhandled queries by three quarters.
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Figure 6.6: Production traffic after HRNN deployment. The fraction of queries
served by the HRNN module (orange) gradually replaces queries without any re-
sponses (purple).

6.6.3 Quality Evaluation

In addition to coverage, we are also interested in accuracy: When the model

generates a response, how good is it? And more importantly, what is the impact

on the customer experience? Recall that these queries were previously not handled

and the system responded with an error message. Therefore, any relevant response

represents an improvement. Furthermore, it is unclear if a non-relevant response is

actually worse than an error message.

To formally evaluate output quality, we devised a simple three-grade relevance

scale: 1 means the response was completely not relevant, 2 means the response was

somewhat relevant (i.e., there might be a better response, but the system output is

reasonable), and 3 means the response was completely relevant.

Every week, our quality assurance team examines a random sample of queries

that were sent to the HRNN and received a response: this resulted in a dataset

of 809 annotated queries. The annotator listened to the audio and looked at the

final output to determine its relevance. Results showed that 29% of responses were
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graded as completely relevant (e.g., query was “Missoula gumball” and the HRNN

response was “The Amazing World of Gumball”), while 38% received a grade of 2,

somewhat relevant (e.g., “Letterman” led to the movie “Dying to Do Letterman”).

Only 33% were considered non-relevant. However, further analysis shows that these

non-relevant responses were usually “interpretable” by viewers, e.g., an erroneous

partial match (“Ally Wong” returned “Austin & Ally”). We did not observe many

responses that were wildly off-base that would perplex the viewer.

In summary, for two thirds of queries that the HRNN provided a response

(4.2M queries), the customer experience improved (since the alternative was an

error message). In the remaining third, where the system provided a non-relevant

response, arguably we haven’t made anything worse. Considering these were the

most difficult questions to begin with, we were extremely pleased with the coverage

and accuracy of my model on live production traffic.

6.7 Conclusion

Our vision is that future entertainment systems should behave like intelligent

agents and support voice interactions. As a first step, I tackle a specific problem,

voice navigational queries, to help users find the TV programs they are looking for.

I articulate the challenges associated with this task, which I tackle by modeling

session contexts using hierarchically-arranged neural network modules. Results on

a large real-world voice query log show that my methods can effectively cope with

ambiguity and compensate for ASR errors. In addition, I helped deploy my model
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into the Xfinity entertainment system to serve millions of queries daily, demonstrat-

ing increased end-to-end query coverage and answer accuracy. Indeed, this work

allows viewers to talk to their TVs, and for customers who learn of this feature for

the first time, it is a delightful experience!
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Chapter 7: Temporal Modeling with Multi-Task Learning for Voice

Search

7.1 Introduction

In Chapter 6, I introduced my first attempt at tackling challenges focused on

directly identifying the program a viewer intends to watch from a voice query, termed

voice query navigation. The key insight is to exploit session context to disambiguate

queries and to cope with speech recognition errors. For example, the query “game

of throw” can either refer to the television series “Game of Thrones” (because of

a transcription error) or a TV game called “Fish Throw Game”. However, if the

viewer just uttered “HBO series” a moment ago, then it is far more likely that she

is looking for the former since we know the show is playing on HBO. This intuition

is operationalized using a Hierarchical Recurrent Neural Network (HRNN) model.

The HRNN model was recently deployed into production to serve live traffic at

the tail end of a cascade architecture, as part of a risk-averse deployment strategy.

At present, the model serves millions of queries daily for which the previous modules

provide no response (in other words, the most difficult queries). We have substan-

tially increased end-to-end coverage, reducing the number of unhandled queries by
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three quarters. On these queries, the HRNN definitively improved the customer

experience two thirds of the time and arguably did not hurt in the other third.

Despite the success of the HRNN in production, I noticed two main short-

comings. First, the model adopts a classification-based approach, which is unable

to predict unseen programs (e.g., newly-added content). Furthermore, its formula-

tion has difficulty handling the long tail of rarely-watched programs. Second, my

analysis of millions of queries [43] reveals that they span the gamut from program

navigation to vague entertainment intents (e.g., looking for kids cartoons) to direct

commands (e.g., turning on closed captioning) to queries that have nothing to do

with entertainment (e.g., checking the weather). In fact, I find that around 40% of

queries are either ambiguous viewing intents or not related to viewing a program at

all. Obviously, a model based on program prediction cannot handle such queries.

These two main shortcomings motivated us to explore a different design.

To this end, I propose a novel multi-task neural architecture for query under-

standing that jointly performs three distinct tasks:

(1) Program prediction to directly identify the program or channel referenced

in a viewer’s utterance, out of a catalog of tens of thousands of programs and

hundreds of channels.

(2) Intent classification to understand what the viewer wishes to do. Our sys-

tem recognizes around one hundred intents, ranging from TV commands (record

a particular show) to entertainment intents that vary in specificity to non-

entertainment intents (e.g., how to troubleshoot the wifi connection).
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(3) Query tagging of each token in a viewer’s utterance with domain-specific labels

such as “entity”, “channel”, “modifier”, etc., drawn from a tag set of roughly a

dozen.

Program prediction, intent classification, and query tagging work together in a com-

plementary way. In cases where the decision overlaps—for example, the system

detects that the viewer’s intent is to switch channels, which is confirmed by the tag-

ging and program prediction modules—multiple sources of evidence reinforce the

system’s confidence in the decision. In cases where program prediction fails, tagged

tokens in the query can serve as keywords for searching the program catalog. For

example, given the query “watch Tom Hanks movies on HBO”, program prediction

may fail since the viewer is not looking for a specific program. The system, however,

can parse the query into a logical form via the query tags: [person=“Tom Hanks” ∧

category=“movies” ∧ channel=“HBO”] and return a list of options to the viewer.

I evaluate my multi-task model in a carefully-controlled setting on large real

data, demonstrating effectiveness gains beyond my HRNN model and other com-

petitive baselines. More importantly, the multi-task problem formulation provides

a unified framework for understanding voice queries that express a multitude of

intents.

This chapter makes the following contributions:

• I provide a descriptive data analysis of viewers’ voice queries from multiple per-

spectives, including a number of standard measures such as query frequency,

query/session length, etc. In addition, I propose a taxonomy of user intents
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and explain the need for fine-grained domain-specific query tagging.

• I articulate a novel framework for understanding voice queries posed to an en-

tertainment platform, decomposed into the three tasks of program prediction,

intent classification, and query tagging. In particular, I explain why all three are

necessary to properly understand queries.

• I describe a neural architecture that jointly learns how to perform all three tasks,

explaining the intuition behind my design choices. Evaluation on a large voice

query log demonstrates how joint learning of the three tasks improves accuracy

on each task individually. The multi-task model provides the basis of an end-to-

end system for handling queries that can draw from approximately one hundred

different intents.

This chapter is organized as follows: first I present a comprehensive log analysis over

81M real voice queries in Chapter 7.2, attempting to answer the question “what do

viewers say to their TVs?”. Motivated by the data analysis, I propose a novel multi-

task framework to interpret users’ voice queries in Chapter 7.3. Then I present the

evaluation of the multi-task model on large-scale query logs in Chapter 7.4. Finally

I conclude this work in Chapter 7.5.

7.2 Voice Log Analysis

In this section, I present an analysis of log data collected from the Comcast

Xfinity X1 platform during the week of Feb. 22 to 28, 2017. The dataset contains

81.4M voice queries from 8.1M unique devices.
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Figure 7.1: Characteristics of voice queries directed at entertainment systems: dis-
tribution of query frequency (left), query length (middle), and session length (right).

Recall that our system receives as input the one-best result of a black-box

third-party ASR system, which is a text string. We do not have access to transcrip-

tion lattices or n-best lists. Although the ASR system is specifically tuned to our

domain, it needs to recognize millions of program titles, hundreds of thousands of

person names, and tens of thousands of sports teams, all of which overlap with each

other. Television content is often very localized, e.g., a viewer wants to watch local

sporting event with the “Augsburg Auggies”, making domain adaptation difficult.

Another challenge is the diversity of customers in terms of age, ethnicity, etc.

For example, I have observed that many ASR errors come from kids wanting to

access their favorite cartoon; see Liao et al. [144] for a summary of ASR challenges

with children.

Finally, it is important to recognize that this analysis represents a (recent)

snapshot in time. The model deployed today has been improved, and there is always

a co-evolution of system capabilities and customer queries.
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7.2.1 Query and Session Lengths

Out of the 81.4M voice queries, there are 4.46M unique queries, indicating

that despite the presence of frequent head queries (e.g., “CNN”), there is plenty

of linguistic diversity in the data. A query has 1.96 tokens and 9.70 characters

on average, and the number of unique tokens is 199K (constrained by the ASR

system). Around 7.4% of tokens are out of vocabulary (OOV) with respect to the

Google News corpus used to train word2vec [92]; 13.8% queries have OOV words.

Most OOV words are due to a mismatch between the vocabulary of the ASR system

and our text processing tools.

Figure 7.1 presents three views of the dataset. The left panel shows a standard

log–log (base 10) plot of query frequencies. The top five most frequent queries

are “Netflix”, “CNN”, “Fox News”, “ABC”, and “free movies”, uttered by viewers

hundreds of thousands of times per week. In the tail, we observe 3.3M unique

queries. Unsurprisingly, the distribution is Zipfian. I examine query intents in more

detail in Chapter 7.2.2, but note here that in addition to channel names and favorite

apps, some of the most frequent queries are intended for browsing the catalog, where

the viewer does not have a specific program in mind; “free movies”, “on demand”,

and “movies” are among the top 20 in terms of frequency.

The center panel shows the distribution of query lengths in terms of the num-

ber of tokens; for clarity, I only show queries with lengths up to 30 tokens. After

removing punctuations and normalizing text, around 42% of incoming queries con-

sist of a single token, many of which are single-word channel names. Zero-length
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queries, comprised solely of punctuations, are mostly ASR errors. Some of the longer

queries can be quite specific movie descriptions (e.g., “Go on the movie when the

kids are on the bold and 22 of them got stranded on island.”) or just an excited kid

repeating the same query over and over (e.g., “the amazing world of gumball” re-

peated four times). I also recognize movie quotes and lyrics in the dataset, which

tend to be longer in length.

Finally, the right panel in Figure 7.1 shows the number of queries in a “voice

session”, which I define as a sequence of consecutive queries with a maximum gap

less than 45 seconds between queries. More than 77% of the sessions contain only a

single query. However, a considerable number of very long sessions exist, sometimes

up to a hundred or more queries. Some of these tend to be exploratory, where the

viewer uses voice to navigate the catalog around a central theme: exploring the cast

of a movie or a series of similarly-themed movies are two such examples. Others are

more mechanical—for example, there are viewers who “zap” through channels by

uttering channel names or numbers one by one (e.g., “channel 22”, “channel 20”,

“CNN”, etc.). There are also cases where the viewer appears to be having fun with

the remote by saying random things.

7.2.2 Intent Classification

In this section, I introduce a taxonomy for viewer intents to categorize different

types of queries, originally developed by the Comcast voice remote team. Note that

my analysis is based on the output of the production system that was deployed at
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a particular point in time. The system was based on a combination of hand-crafted

rules and machine-learned models to detect viewer intents, over a taxonomy that has

organically evolved over time. I would characterize the accuracy as “reasonable”,

but certainly not perfect. Although system output error is a confound, I do not

believe errors substantively alter my findings.

The distribution of intents in the dataset is shown in Figure 7.2. Not surpris-

ingly, queries to entertainment systems revolve around a desire to watch something.

At a high level, we break this intent down into whether the viewer is looking for

a specific program (View) or not (Browse). In the query logs, the View intent

comprises approximately 66% of all queries, and can be further broken down into

the following three categories:

• View Channel (29.7%): the viewer wishes to watch a specific channel such as

HBO or ESPN. These voice queries obviate the need for the viewer to remember

specific channel numbers.

• View Program (27.1%): the viewer wishes to watch a specific program by

name. This could be a series (e.g., “Game of Thrones”), a specific movie (“Back

to the Future”), a comedy act, etc.

• View Event (8.8%): the viewer wishes to watch the broadcast of an event

such as the Super Bowl or the Oscars. These events are almost always manually

curated.

The Browse intent, where viewers do not have a specific program in mind, rep-

resents 6.5% of queries. Examples are “show me free kids movies” or “HD movies
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Figure 7.2: Intent distribution from the query logs.

with Julia Roberts”. In these cases, the viewer has some idea of the desired program

but is expecting suggestions from the system. Any query that involves filtering the

program catalog is identified with this intent.

Beyond View and Browse, the taxonomy includes three other less frequent

categories:

• Entity (1.9%): the viewer wishes to examine a particular entity profile (e.g.,

of an actor such as Tom Hanks). This profile includes the actor’s picture, bio,

filmography, etc.

• Record (1.5%): the viewer is accessing DVR functions.

• Other (11.6%): there is a long tail of infrequent intents (a few dozen) that

we lump together. These include everything from toggling closed captioning,

accessing the home security system, debugging wifi connections, and engaging

external apps.
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Finally, there are two categories that are specifically artifacts of the production

system:

• Ambiguous (9.1%): the system identified two or more possible intents and

prompts the viewer with a “did you mean...” dialog.

• Unknown (3.9%): the system was not able to identify an intent, either due to

algorithmic limitations or genuine cases in which no clear intent was expressed.

The View intent is analogous to known-item retrieval in the document retrieval

context and captures what we have previously called navigational voice queries in

Chapter 6.

7.2.3 Query Tagging

In Chapter 6, query understanding is formulated as multi-way classification

over a set of programs. Although queries with the View intent dominate the

dataset, there are at least two reasons why such an approach falls short: First,

for intents other than View, program prediction obviously makes no sense. Second,

even for View intents, a classification-based formulation has difficulty handling tail

programs. There are typically tens of thousands of programs accessible to viewers

at any time, especially including on-demand titles. For programs that are not fre-

quently watched, there is insufficient training data; for example, the previous HRNN

model handles less than a thousand programs. It would be desirable to give viewers

voice access to the entire catalog.
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Figure 7.3: Distribution of query tags.

To address these issues, I employ query tagging, which works in conjunction

with intent classification to provide a fine-grained analysis of viewers’ queries. Here,

the problem is formulated as a sequence labeling task, with the following tag set:

• Person: a person named entity.

• Title: the title of a program.

• Team: a sports team or sports-related term (e.g., “NFL”).

• Cost: terms related to cost (e.g., “free”).

• Format: terms related to format (e.g., “HD”, “4K”).

• Asset: e.g., “movie”, “series”, “music video”, etc.

• Genre: e.g., “drama”, “action”, “comedy”, etc.

• Context: a catch-all for all other terms.
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For example, from the query “Watch Tom Hanks movies in HD”, we extract a

sequence of tags: Context Person Person Asset Context Format. Similar

to intent detection, the current system takes advantage of handcrafted patterns

as well as machine-learned models to parse the query into the logical form, e.g.,

(Person=“Tom Hanks” ∧ Asset=“Movie” ∧ Format=“HD”). This is then

used to filter the program catalog to provide a list of suggestions.

In Figure 7.3, the solid dark bars show the distribution of tags over all tokens

observed in the dataset, whereas the lighter gray bars show the percentage of queries

in which each tag exists. Based on this, we see that about 58% of tokens are part of

either a named entity or modifier (not Context). Only 29% of queries are entirely

made up of context tokens (i.e., no entities or modifiers were extracted). In this

entity-heavy dataset, title and channel mentions alone constitute over half of all

tokens. Even though some of the tag types occur less frequently than others (e.g.,

only 1% of tokens are tagged as Genre), high accuracy for all tags are necessary to

produce a good user experience. For example, genre-based movie browsing requires

reliably identifying Genre tags.

Intent classification, program prediction, and query tagging work together in

a complementary fashion. They can be combined to resolve ambiguity and reinforce

confidence on clear intents, or can be used as increasingly-broad backoff mechanisms

to cope with queries that have vague intents. For example, if we identify a clear

viewing intent and also a specific program, there is a high degree of confidence

that the joint prediction is correct. On the other hand, if the system identifies a

Browse intent, the various modifiers from tagging (e.g., Format, Cost, etc.) play
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an important role to understand a viewer’s query. In this example, intent prediction

and query tagging need to work together to generate an appropriate response.

7.2.4 Beyond Navigational Queries

Finally, I present a preliminary linguistic analysis of the query logs to provide

a glimpse into the diversity of viewer queries posed to entertainment systems. In

order to score queries based on some “naturalness” measure, I trained a language

model using the Hansard parliament speech corpus (0.76M sentences) and the IMDB

movie review dataset (1.22M sentences). As a filtering step, I removed all queries

that matched a title in the catalog exactly as well as any query with five tokens or

less. This yielded a set of 2.9M queries (1.1M unique), which were then scored by

the language model and sorted by the LM score plus the log of the frequency of

occurrence. The result is a ranked list of frequently-occurring “natural” utterances

directed at the voice remote.

Analyzing the results, we observe a wide range of intents. In fact, the percent-

age of Unknown queries is 50% higher in this subset of the logs, pointing to an

increased level of complexity. The percentage of Browse queries is also much higher

(15% vs. 6%), which affirms the need for a tagging-based approach (as presented in

Chapter 7.2.3) to properly understand complex queries.

Queries ranked highly in the “naturalness” measure ranged from movie quotes

and music lyrics (e.g., “All I want to say is that they don’t really care about us.”) to

very specific requests (e.g., “Return to the movie that I did not finish last night.”).
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On the other hand, there were also open-ended questions (e.g., “Do you have a

movie about the Vietnam War?”) as well as factual questions (e.g., “Who is being

nominated for best picture in the Academy Awards?”).

To gain a little more insight into the syntactic structure of the queries, I

ran a dependency parser [145] on all 1.1M unique queries in this subset. The most

common root word was “show” with part-of-speech verb (show/VB), comprising 12%

of all queries. In fact, root words of verb forms (VB, VBP, VBZ, etc.) comprised

half of all queries. The remaining queries had a root with the part-of-speech noun

(40%), adjective (2%), preposition (1%), and determiner/pronoun (negligible). The

most frequently observed noun root was movies/NNS; for adjective and prepositions,

free/JJ and on/IN topped the list, respectively.

7.3 Multi-Task Learning Model

Inspired by the previous log analysis, in this section, I present a multi-task

learning architecture with detailed explanations about model design for program

prediction, intent classification, and query tagging. I first define the problem in a

probabilistic manner, then present the neural models specifically-designed for each

of the three tasks.

7.3.1 Problem Formulation

Given a voice query session [q1, . . . , qn], the task is to predict three types of

information: 1) a tag sequence associated with each query, 2) an intent type of
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Symbol Description
si the i-th session in the whole dataset D
qit the t-th query in the i-th session
ait the intent type (i.e., channel) of query qit
τit the tag sequence (i.e., context -> entity name) of query qit
pi the program label of the i-th session
Ai a list of intent types (ai1 , ..., ain) for queries in session si
Ti a list of tag sequences (τi1 , ..., τin) for queries in session si
vit embedding vector for query qit
cit contextual vector for the first t-th query [qi1 , ..., qit ] in si

Table 7.1: Notation Table.

each query and 3) the program p that the user intends to watch. I perform the

three tasks in parallel on each successive new voice query qt (t ∈ [1, n]) , exploiting

all previous queries in the session [q1, . . . , qt−1] as context. For example, in a three-

query session si = [qi1 , qi2 , qi3 ], there will be three sets of predictions: first with input

as [qi1 ], second with [qi1 , qi2 ], and third with [qi1 , qi2 , qi3 ]. At each time step t, the

three prediction tasks (program prediction, intent classification and tagging) will be

performed simultaneously. The input to the system is a sequence of voice queries

(i.e., a voice session), which are text strings transcribed from a third-party “black

box” ASR system.

In general, we aim to learn a mapping function Θ from a query sequence to

a set of predictions, including the intended program, the intent type and the tag

sequence of each query. I model this mapping through a probabilistic framework:

Data: D = {(si, pi, Ai, Ti) | si = [qi1 , ..., qin ], pi ∈ Φ,

Ai = [ai1 , ..., ain ], Ti = [τi1 , ..., τin ]}|D|1
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Model: θ̂ = arg max
θ

|D|∏
i=1

n∏
t=1

P (pi, Ai, Ti|qi1 , ..., qit ; θ)

= arg max
θ

|D|∏
i=1

n∏
t=1

P (pi, ai1 , ..., ait , τi1 , ..., τit|qi1 , ..., qit ; θ)

(7.1)

where D denotes a set of labeled sessions (si denotes the i-th session with n queries),

pi is the intended program for session i, Φ is the global set of programs, Ai represents

a list of intent types for the i-th session where ait is the intent type (a scalar) of

the t-th query in the i-th session, Ti is a list of tag sequences with each τit denotes

the tag sequence of the t-th query in the i-th session, and θ is the set of parameters

in the mapping function Θ. All the symbols used in this chapter are also presented

in Table 7.1 for quick reference. Overall, the goal is to maximize the product of

prediction probabilities for all queries in the dataset D (Equation (7.1)).

As mentioned above, the program prediction, intent classification and tagging

tasks can share information to reinforce the learning of better discriminative fea-

tures. I model such interactions in a multi-task learning framework where 1) the

three tasks share some underlying layers and have a task-specific component to en-

able information sharing and task-specific optimization, and 2) the objective loss

functions of the three tasks are weighted and summed together during optimiza-

tion. To this end, I decompose the prediction tasks in Equation (7.1) into learning

three components: a query embedding component F(x; θF), a contextual component

G(x; θG), and a family of task-specific components H(x; θH). The query embed-

ding component F(·) takes the text of a query as input and produces a semantic

embedding representation of the query. The contextual component G(·) considers
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representations of all the preceding queries as context and maps them to a high-

dimensional embedding vector to capture both semantic and contextual features.

The query embedding and contextual components are shared across tasks. Finally,

the task-specific components H(·) perform separate task-specific predictions based

on the learned contextual vector. I adopt the following decomposition:

P (pi, ait , τit |qi1 , ..., qit) ∼ P (pi, ait , τit |cit) · P (cit |vi1 , ..., vit)

· P (vi1 , ..., vit |qi1 , ..., qit)
(7.2)

where cit denotes the contextual embedding of the first t queries in the i-th session

and vit denotes the embedding of the t-th query of the i-th session. The relationship

between these embeddings can be formulated using the three component mappings

above: F maps the query qit to its embedding vit in vector space; G maps the

sequence of query embeddings [vi1 , ..., vit ] to a contextual embedding cit ; and H

maps the contextual embedding to task-specific predictions:

vit ∼ F(qit ; θF), cit ∼ G(vi1 , ..., vit ; θG),

(pi, ait , τit) ∼ H(cit ; θH)

1 ≤ t ≤ n

By assuming that each query is embedded independently, we can reduce Equa-

tion (7.2) as follows:
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P (pi, ait , τit|qi1 , ..., qit) = P (pi|cit) · P (ait |cit) · P (τit |cit)

· P (cit |vi1 , ..., vit) ·
t∏

j=1

P (vij |qij)

Note that for a tagging task, we only need the query itself to generate tags for each

word, while the contextual information can be useless. Therefore I replace the term

P (τit|cit) with P (τit |qit), through which we can reformulate the model framework in

Equation (7.1) as follows:

Model: θ̂ = arg max
θ

|D|∏
i=1

n∏
t=1

P (pi, Ai, Ti|qi1 , ..., qit ; θ)

= arg max
θ

|D|∏
i=1

n∏
t=1

P (pi|cit) · P (ait |cit) · P (τit|qit)

· P (cit |vi1 , ..., vit) ·
t∏

j=1

P (vij |qij) (7.3)

After decomposing the probabilistic framework into distinct components, I

propose a neural network based approach to model each component and adopt

multi-task learning to optimize the model simultaneously.

7.3.2 Model Architecture

The overall model architecture is shown in Figure 7.4 and consists of three

distinct components:

(1) Query embedding component F(·), shown in the bottom lookup layer and

the blue BiLSTM: the lookup layer converts a raw query string into a sequence
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Figure 7.4: The proposed model architecture, which contains three distinct com-
ponents: (1) a query embedding component at the bottom (blue rectangles) that
converts a query string into a learned representation, (2) a contextual component
(red dotted rectangles) that models the context between queries in a session, and
(3) task-specific components designed for three tasks: program prediction (in red),
intent classification (in pink), and query tagging (in yellow).

of vectors (through word2vec [12]) and the BiLSTM learns a semantic embedding

for the query. More formally, given a query qit represented as a sequence of words

{wit}, the output is a sequence of hidden vectors {hbiit} learned from the BiLSTM.

The last hidden vector is used as the query embedding vit , which is passed to the

contextual component. The sequence of hidden vectors {hbiit} serves as input to the

tagging model to generate a word-level tag sequence.

(2) Contextual component G(·), shown as the red-dotted rectangles, is a LSTM

model that takes all the preceding query embeddings {vi1 , ..., vit} as context to

produce a contextual vector cit that captures both semantic and contextual features.

The contextual vectors {cit} are then fed into the intent classification and program
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prediction components.

(3) Task-specific components H(·) for query tagging (the yellow rectangle),

intent classification (the pink rectangle), and program prediction (the red rectangle).

At the top, I weight the losses from the three tasks and sum them together for

unified multi-task learning. Details of the three task components are provided in

Chapters 7.3.2.1–7.3.2.3, and multi-task optimization in Chapter 7.3.3.

7.3.2.1 Program Prediction

The first task-specific component is responsible for program prediction, which

models the probability P (p|cit) of generating program p given the contextual vector

ct for the i-th ongoing session {qi1 , ..., qit}. Unlike the HRNN model that treats

program prediction as multi-way classification (and thus is unable to handle rarely-

watched tail programs and newly-added programs), I model the task as a ranking

problem (i.e., modeling the relevance between a query and a program). My model

introduces a novel triplet ranking approach that can directly exploit interactions

between training (query, positive program, negative program) triples and can take

advantage of program embeddings to integrate different sources of evidence (e.g.,

program title, viewers’ search and viewing histories) in a flexible manner. The

learned program embeddings are paired with the query embeddings in a triplet loss

to identify the most relevant program in a contrastive manner. In my model, a

channel (e.g., “HBO”) is treated exactly like a program.

Let Φ denote the set of all programs in the training dataset. I reformulate
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maximizing the classification probability P (p|cit) as a ranking objective:

P (rel | cit , p+) > P (rel | cit , p−), ∀p+, p− ∈ Φ

That is, we wish to assign a higher relevance score to positive programs from the

training data than any negative program. I propose three ways to learn a program

embedding:

(1) Search-based program representation. We can define programs purely

based on how viewers search for them. In this representation, the program embed-

ding layer is a simple lookup layer that maps a program id (scalar) to a learned

embedding vector, which is randomly initialized and updated during training. My

assumption is that given enough data, the embeddings will converge to a mean-

ingful representation, reflecting how viewers search for programs. This is similar

to how word2vec [12] is trained from neighboring word associations; in this case,

I use search-based associations instead. Like word2vec, such representations can

overcome lexical mismatches. For example, viewers may search for a channel by

its number (i.e., “210” → “HBO”), where there is no lexical overlap; this represen-

tation can learn such correspondences from log data. However, the drawback of a

search-based representation is its dependence on observations; it is unable to handle

cases where the viewer refers to an unseen program.

From this representation, the relevance score between an ongoing session {qi1 , ..., qit}

and a program can be measured by the cosine similarity between the program em-
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bedding p and the contextual vector cit :

P (rel | p, qi1 , ..., qit) = P (rel | p, cit) = cosine(p, cit)

(2) Title-based program representation. Alternatively, we can model query–

program similarity lexically. To accomplish this, I copy the query embedding compo-

nent as the program embedding layer and apply it to the program title, from which

we can obtain another sequence of BiLSTM vectors representing the program. Let

the query representation be {hbiq } and program representation be {hbip }. I adopt an

interaction-based method (similar to [9]) to model the semantic similarity between

each word pair in (query, program):

sim(j, k) = cosine(hbiq [j],hbip [k])

From this we obtain a similarity matrix where each entry (j, k) denotes the cosine

similarity between query word j and program title word k. I apply max pooling along

the rows, which returns a query-sized feature vector. Each feature j denotes the

highest similarity between any program title word and query word j. To capture the

relative importance of different query words, I weight this feature vector (element-

wise) by inverse document frequency (IDF). Similarly, I repeat the same operation

along the columns to obtain a program-sized feature vector, where each element k

denotes the highest similarity between any query word and program title word k

(also IDF-weighted). These two feature vectors are concatenated and passed to a
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linear layer, which computes a relevance score for the query–program pair.

(3) Combination-based program representation. To capture the best of both

representations, I stack another linear layer on top to combine the search-based

and title-based relevance scores. This can be considered a linear learning-to-rank

approach with only two feature inputs.

At this point, I have introduced three approaches for computing the relevance of a

program with respect to the current query in the session. Given such a relevance

scoring function P (rel), I explore the interactions between positive and negative

programs through a softmax function:

o[p+] = P (p+|qi1 , ..., qit) =
exp(P (rel | p+, qi1 , ..., qit))∑
p′∈C exp(P (rel | p′, qi1 , ..., qit))

where p+ is the positively labeled program for session i, o[p+] denotes the probability

of predicting p+, and C denotes the set of candidate programs to be ranked. Ideally,

C should be equal to the program set Φ; in practice, I approximate this through

negative sampling, by selecting k (e.g., k = 10) programs from the top ranked

results of query qit using a standard retrieval algorithm (i.e., BM25). The goal

is to maximize the likelihood of generating positive programs given queries across

the dataset, which can be equivalently formulated as minimizing the program loss

function:

Lp = −
|D|∑
i=1

n∑
t=1

log oi[p
+] = −

|D|∑
i=1

n∑
t=1

logP (p+|qi1 , ..., qit)

where the outer sum iterates over all sessions in the dataset D, and the inner sum
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iterates over all queries in session i.

7.3.2.2 Intent Classification

Similar to program prediction, I also aim to predict the intent type ait for query

qit given its contextual vector cit . I model this task as a classification problem since

the vocabulary of intent types is relatively small and stable. On the top section

of Figure 7.4 (the pink rectangle labeled “Intent Classification”), I build a fully-

connected layer followed by a softmax layer for learning the classification function.

The fully-connected layer consists of two linear layers with a ReLU element-wise

activation layer in between. The contextual vector cit is fed into the fully-connected

layer first, followed by L1 normalization via the softmax function. In the normalized

vector o, each output score o[aj] denotes the probability of producing intent type aj

as output. The intent classification loss is summed over all queries in the dataset,

as follows:

Li = −
|D|∑
i=1

n∑
t=1

logP (ait |cit) = −
|D|∑
i=1

n∑
t=1

log oit [ait ]

7.3.2.3 Query Tagging

Unlike program prediction and intent classification, which are query-level pre-

dictions, query tagging is a sequence labeling task. More formally, the query tagging

component takes the output vector sequence {hbiit} from the bottom BiLSTM as in-

put and generates a tag sequence {τit}, where each tag label corresponds to a word

in the query qit .

192



I use a conditional random field (CRF) [146] as my tagging model (the yellow

rectangle labeled “Tagging” in Figure 7.4) on top of the BiLSTM. In addition to

capturing the neighboring word context through the BiLSTM, a CRF can exploit

correlations between tag labels in neighborhoods to jointly decode the best label se-

quence for a given query. I use standard maximum likelihood estimation for training

the CRF and the Viterbi algorithm for decoding. I omit the technical description

of CRFs for space reasons, but refer readers to Lafferty et al. [146] for details.

7.3.3 Multi-Task Learning

Since the three tasks have their own optimization objectives, I adopted a multi-

task learning strategy to train the entire model end to end, jointly optimizing all

three tasks. This is accomplished in two stages: Following a commonly adopted

strategy [147, 148], in the first stage, all tasks are jointly trained by summing up

their losses based on a mixing ratio. Let wp, wi, and wt be the contribution weight

to the combined loss from each task (program prediction, intent classification, and

query tagging, respectively). The overall loss is computed as follows:

L = wp · Lp + wi · Li + wt · Lt

where wp, wi, and wt sum to 1.0. In the second stage, I fix the underlying shared

layers and fine-tune the top task-specific layers. In the model, the weights of the

bottom BiLSTM and hierarchical LSTM layer are held constant, and the top layers

are trained separately with task-specific losses.
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7.4 Evaluation

7.4.1 Data Collection

To build a dataset for supervised learning, we need the following for each ses-

sion: the program title (one per session), the intent type (one per query), and query

tags (one for each query word). I use a combination of logs and human annotations

to obtain such data. The program title is extracted entirely from logs, in a man-

ner analogous to harvesting clickthroughs in the web domain: If the viewer began

watching program p after the final query in a session and continued watching it for

at least 150 seconds, I label the session with p (this duration parameter was explored

in Chapter 6.4.1). For the intent type and the query tags, I used a semi-supervised

approach to collect ground truth data. Initially, hand-crafted patterns were man-

ually designed by the annotation team, which were then applied to parse queries

into a logical form, from which I extracted the intent type and query tags. New

patterns were gradually added over time to increase coverage. This bootstrapping

process can be thought of as a simple yet practical human annotation strategy when

exhaustive hand-labeling is infeasible in a large-scale setting.

Using this process, I extracted a total of 8.8M training instances (labeled

sessions) from 81.4M queries received in the week of February 22 to 28, 2017, which

I then randomly sampled and split into training, validation, and test sets. The intent

and query tags represent the output of a particular set of hand-crafted patterns at

a particular point in time. Basic statistics are summarized in Table 7.2. All three
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Dataset Sessions Queries Avg. Session Len Avg. Query Len
Train 870941 1186937 1.36 2.24
Valid 623142 823565 1.32 2.23
Test 622959 825639 1.33 2.23

Table 7.2: Dataset statistics.

sets are sufficiently large to realistically capture the diversity of viewer queries. The

percentage of single-query vs. multi-query sessions is about 80:20 for all three sets.

The program set contains 26247 distinct programs and 244 channels. About 10%

of the queries in the validation and test sets have program labels that are not seen

in the training set. The total number of intent and tag types are 109 and 11,

respectively.

7.4.2 Model Training

I used 300-dimensional word2vec [12] embeddings to encode each word, which

is trained on the Google News dataset and freely available. The word vocabulary of

the training set is 29.3K and 4282 lack word2vec vectors. These words were randomly

initialized with values uniformly sampled from [−0.05, 0.05]. Words unseen in the

validation and test sets were treated as out of vocabulary.

During training, I used stochastic gradient descent together with the Adam

optimizer to iteratively update model parameters. The learning rate was initially set

to 10−3 and then decreased by a factor of three when the validation set loss stopped

decreasing for three epochs. The LSTM output size and the size of the linear layer

was set to 150. The batch size was set to 256.

At test time, I selected for evaluation the model that obtained the lowest task-
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specific loss on the validation set. I used the top 20 programs retrieved by BM25 from

the program vocabulary as the input candidates to my models for reranking. I also

add all channels into the candidates pool when the detected viewer intent is to view

a channel. This helps cases when the query and program share no lexical overlap

(i.e., the query is a channel number and the “program” is the channel name). My

models were implemented using Keras, running on a server with 8 GPUs (GeForce

GTX TITAN X) and 256GB RAM.

In order to demonstrate the effectiveness of multi-task learning, I compared

two different approaches to training my models:

Single-Task Learning (STL). Although the architecture is designed for multi-task

learning, it can still be trained for a single task. In this mode, the training process

only optimizes the intended task loss (e.g., intent classification), while ignoring losses

from the other two tasks (by assigning zero to their mixing weights). Typically, the

training process converges in five epochs and each epoch takes about 1.5 hours.

Multi-Task Learning (MTL). For multi-task learning, I used the two stage ap-

proach described in Chapter 7.3.3. For tuning the weights of the individual task-

specific loss, I performed cross-validation on the validation set to select the best

mixing ratio that minimizes the weighted sum of the three task-specific losses. In

practice, I found a mixing ratio of (0.55, 0.05, 0.4) for program prediction, intent clas-

sification, and query tagging, respectively, works well for the search-based program

representation, and (0.1, 0.2, 0.7) worked well for the title-based and combination-

based program representations. Compared to STL, the MTL training process takes
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much longer, typically 15 epochs per stage.

7.4.3 Metrics and Baselines

Intent classification and query tagging tasks were evaluated based on accuracy.

For program prediction, I used three metrics (averaged over all queries): precision at

one (P@1), precision at five (P@5), and Mean Reciprocal Rank (MRR). Use of these

metrics was motivated by the precision-oriented nature of television navigation, as

limited input options require our system to satisfy the viewer’s query as quickly as

possible. A number of baselines are described below; note that some baselines are

designed for a particular task, while others can be extended to all three tasks.

BM25: I built a 3-gram (character-level) inverted index of the program set Φ.

During retrieval, the matching score is computed on 3-gram overlaps between query

and candidate programs using Okapi BM25 weighting (k1 = 1.2, b = 0.75).

SVMrank [142]: I reused the learning-to-rank baseline introduced in the previous

chapter 6.4, which includes exact and soft-match features (BM25 and embedding-

based) as well as popularity priors.

DSSM [11]: This neural ranking model for web search uses word hashing to model

interactions between queries and programs at the level of 3-grams. This method

is an appropriate baseline for my problem since it can handle noisy ASR output,

unlike neural ranking models based primarily on word matching [10,46].

DSSM+S: Using the same model as above, I concatenate queries in one session

with a special boundary token between neighboring queries. The goal here is to
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examine whether simple query concatenation is sufficient to capture context signals

in a session.

Stanford CRF Tagger1 [149]: A standard baseline for token-level tagging prob-

lems, I trained a linear CRF that combines the most popular local and global fea-

tures, including features based on n-grams, context windows, etc.

HRNN w/ LSTM/BiLSTM [42]: The original model, as described in Chap-

ter 6.3, can be extended to intent classification and query tagging task by adding

separate fully-connected layers for each task. I also tried replacing the bottom

LSTM layer with a BiLSTM to examine the effects of bidirectional query modeling.

7.4.4 Experimental Results

Results for all three tasks are shown in Table 7.3. Each row represents an

experimental setting (numbered for convenience). The second column specifies the

model, and remaining columns indicate the results for program prediction, intent

classification, and query tagging, respectively. MTLA refers to my multi-task learn-

ing architecture described in Chapter 7.3, trained either using the single-task learn-

ing or multi-task learning conditions described in Chapter 7.4.2. Results are shown

in the two subtables titled “Single-Task Learning” and “Multi-Task Learning”, re-

spectively.

1https://nlp.stanford.edu/software/CRF-NER.shtml
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ID Model
Program Intent Tagging

P@1 P@5 MRR Accuracy
1 BM25 0.674 0.750 0.711 - -
2 SVMrank 0.682 0.758 0.718 - -
3 DSSM 0.703 0.765 0.732 - -
4 DSSM+S 0.699 0.758 0.728 - -
5 Stanford CRF Tagger - - - - 0.821
6 HRNN LSTM 0.724 0.783 0.755 0.915 0.884
7 HRNN BiLSTM 0.725 0.786 0.753 0.916 0.939

Single-Task Learning
8 MTLA (search-based) 0.715 0.770 0.744

0.917 0.9449 MTLA (title-based) 0.720 0.796 0.754
10 MTLA (comb-based) 0.738 0.802 0.768

Multi-Task Learning
11 MTLA (search-based) 0.721 0.780 0.758 0.923 0.946
12 MTLA (title-based) 0.728 0.803 0.762 0.924 0.945
13 MTLA (comb-based) 0.757 0.812 0.792 0.925 0.945

Table 7.3: Model effectiveness, where each row represents an experimental setting.
MTLA refers to multi-task learning architecture described in Chapter 7.3, trained
either using the single-task learning or multi-task learning conditions. Columns
show results for program prediction, intent classification, and query tagging.

7.4.4.1 Program Prediction

First, we can see that BM25 achieves reasonably-high accuracies (P@1 of

0.674) on the test set. The SVMrank predictor achieves slightly better accuracy

than BM25 by taking advantage of multiple hand-crafted features in a supervised

setting. Taking a closer look at the learned model weights, we find that these

additional features are largely dominated by the BM25 feature and provide only

modest benefit to the overall model. DSSM significantly outperforms SVMrank as

well as BM25, whereas DSSM+S performs slightly worse than DSSM, suggesting

that simple query concatenation is not able to capture context signals in a session.

As expected, the HRNN is able to outperform the other baselines by quite a
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bit. I identified two main reasons: (1) There are about 3% of queries (about 10%

of all channel-intent queries) in which the viewer searched for a particular channel

by memorizing its channel number; (2) Major ASR errors sometimes results in

very little lexical overlap between the query and the intended program title (e.g.,

“Dr. Seuss’s The Lorax” is transcribed as “The Laura”). In both cases, the query

and the program lack common 3-grams, so approaches based on text matching like

DSSM cannot predict the correct program. I further examine the session context

by decomposing the dataset into single-query and multi-query sessions. Comparing

DSSM and HRNN, the accuracy gap is much larger on multi-query sessions (P@1 of

0.546 vs. 0.483) than single-query sessions (P@1 of 0.770 vs. 0.757), thus affirming

the value of modeling session context. Single-query sessions obtain much higher

accuracies since they are by construction “easy queries” in which viewers reach

their intended program in a single query. The above findings are consistent with

Chapter 6.5. Finally, we see that bidirectional modeling (BiLSTM) provides little

benefit for program prediction.

Turning our attention to the “Single-Task Learning” subtable (rows 8–10),

we observe that the search-based program representation performs worse than the

HRNN model. Considering that these two models share the same underlying query

embedding and contextual component, the difference comes from the problem formu-

lation (classification vs. ranking) and how we train the model. In the search-based

model, I selected k negative programs for each query-program sample during train-

ing. This can be less effective than a classification formulation since the classification

loss enforces the HRNN model to select the positive program against all negative
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programs, thus giving it stronger discriminative power. However, this does not mean

that classification is better in this problem setting, as its drawbacks are pointed out

in Chapter 7.1. This is further verified by the results of the combination-based

ranking approach (row 10), which significantly outperforms HRNN at p < 0.05 us-

ing Fisher’s two-sided, paired randomization test [1]. Incorporating signals based

on program titles helps the combination-based approach answer queries that are in-

tended for programs not observed during training, which cannot be answered using

a classification approach.

Subtable “Multi-Task Learning” (rows 11–13) confirms the benefits of multi-

task learning. Regardless of program representation, program prediction is consis-

tently and significantly (p < 0.05) better than training in isolation. As expected, the

improvements from multi-task learning come from partial task overlap with intent

classification and query tagging. High confidence in a predicted intent is able to

help the program prediction component discard outputs that conflict. For example,

if the query “Disney channel shows” is predicted as having intent Browse, the

program prediction should be NA (no answer) instead of a specific program.

7.4.4.2 Intent Classification

As shown in the “Intent” column in Table 7.3, the HRNN models are strong

baselines with fairly high accuracies, suggesting that the intent classification problem

is an easier task due to the limited size of intent set. Bidirectional modeling doesn’t

help improve the accuracy here. Since the approaches in subtable “Single-Task
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Intent Channel Movie Series Event Browse
Channel 97.9% 0.4% 0.5% 0.0% 0.2%
Movie 0.4% 89.7% 2.4% 0.1% 3.3%
Series 0.2% 0.8% 96.2% 0.0% 1.3%
Event 0.4% 3.7% 1.6% 87.3% 0.0%
Browse 0.1% 1.9% 1.8% 0.0% 94.1%

Table 7.4: Confusion matrix for the top five intent types, where the rows indicate
the actual labels and the columns the predicted labels.

Learning” are essentially the same model as the HRNN BiLSTM (with respect to

intent classification), the differences are negligible. However, by jointly learning all

three tasks, we see consistent improvements. The best method (combination-based)

achieves an accuracy of 0.925, which we consider quite impressive given the diversity

of real voice queries.

For further insights, I show the confusion matrix of the best method (combination-

based) for the most frequent five intent types in Table 7.4 (where the rows indicate

the actual labels and the columns the predicted labels). The Channel intent has

the highest accuracy, while the Event intent has the lowest accuracy. This matches

our intuition that channel tuning is an easier task while the Event intent is harder

to identify given its somewhat vague definition. We also see that the model is often

confused between the remaining three intent types: Movie, Series, and Browse.

Again, this is likely due to blurred lines between these intent types. For example,

the query “life of pets” can be interpreted either as an intent to watch the movie

with that title, the television series, or to Browse the catalog for documentaries

about pets.
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Figure 7.5: Tagging accuracy of all methods for five tags.

7.4.4.3 Tagging

In the final “Tagging” column in Table 7.3, we see that the Stanford CRF

tagger achieves the lowest accuracy of 0.821 among all baselines—the HRNN LSTM

is able to outperform the CRF-only approach by more than six absolute points.

Unlike the other two tasks, bidirectional modeling is crucial for the tagging problem

because the tag of a particular word is dependent on both the previous and next

words. By introducing a CRF on top of the BiLSTM in my multi-task model

(“Single-Task Learning”), my model is able to significantly beat the HRNN BiLSTM

and CRF baselines (p < 0.05). Finally, multi-task learning provides an additional

small boost to tagging accuracy.

Not all tags are created equal, which is why I explored the accuracies of various

methods for five representative tags, shown in Figure 7.5. For the most common

three tags (context, channel, and title) that make up 95% of tokens, my multi-task
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learning approach consistently performs the best while the Stanford CRF Tagger

performs poorly. However, the Stanford CRF Tagger performs well on the least

frequent tags (genre and person). This is likely due to insufficient training data

for the genre and person tags (each tag appears in less than 1.5% of tokens). The

LSTM-based approaches have a much larger parameter space, making them more

data hungry. Overall, my best multi-task approach achieves a tagging accuracy of

nearly 95% on average. Once again, we believe that these results are quite impressive

given the diversity of real-world queries.

7.5 Conclusion

To tackle the limitations of my initial classification-based solution for voice

query navigation, I designed a novel neural architecture to jointly accomplish three

related tasks: program prediction, intent classification, and query tagging. This

chapter articulates how the three tasks complement each other to understand a

wide range of intents. The experiments demonstrate how joint learning improves the

effectiveness of each task individually, yielding significant gains over strong baselines.

More importantly, my multi-task framework provides an opportunity to build a

complete end-to-end system for understanding voice queries. This new model is

now being prepared for deployment and will soon be serving millions of Comcast

customers, providing natural voice-based interactions for the entertainment domain.

204



Chapter 8: Conclusion and Future Work

8.1 Summary

This dissertation introduces families of techniques for modeling temporal in-

formation as contexts to assist applications with streaming inputs, such as tweet

search and voice search. In tweet search, the temporal distribution of relevant doc-

uments can be a useful relevance signal to boost ranking effectiveness. I explore

two directions, pseudo trend and query trend, using different sources of temporal

signals to estimate the distribution of relevant documents. In addition, motivated

by the ineffectiveness of existing neural ranking models for tweet search, I propose

a multi-perspective lexical modeling approach with a customized architecture to in-

corporate multiple sources of lexical signals. In voice search, queries in the same

session can help disambiguate the user’s real intent. I propose successively richer

neural network architectures to model the session contexts and cope with queries

that express a multitude of intents.

Pseudo Trend Modeling for Tweet Search. In Chapter 3, I explore meth-

ods to estimate the distribution of relevant documents from timestamps of a list
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of initially retrieved documents. I first present an end-to-end neural framework to

model pseudo trends as a sequence learning problem, where temporally-ordered doc-

uments can have impact on their neighbors. This is achieved by a lexical modeling

component that first converts query-document pairs to vector representations de-

noting their similarities, then by a bi-directional RNN component that models the

interactions of neighboring documents. Next, I propose a continuous HMM based

approach to model pseudo trends, and utilize the estimated bursty HMM states

for selecting more expressive terms for query expansion. Experimental results in-

dicate: 1) coupled with the best lexical modeling component, the neural temporal

framework obtains significant improvements over competitive temporal baselines,

suggesting that neural network-based techniques are promising for temporal mod-

eling; 2) the continuous HMM model selects better terms for query expansion and

achieves further effectiveness gains.

Query Trend Modeling for Tweet Search. Beyond pseudo trends, I explore an-

other source of temporal signal in Chapter 4 that can be captured from time-aware

collection statistics of query terms, which is called a query trend. It enables us to re-

cover the distribution of relevant documents directly from the term statistics stored

offline without an initial retrieval, which can be substantially faster than pseudo

trend-based methods. I first explore different compression methods to compress the

sparse time-sliced term statistics into compact representations, then present two

methods to model query trend signals: a linear feature-based ranking method and
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a non-linear regression-based method to incorporate all query trends. In addition,

I combine features derived from the two query trend methods and from previous

pseudo trend methods in an ensemble approach. Experimental results suggest that

query trend methods alone are competitive with the state-of-the-art pseudo trend

methods, while combining both sources of evidence yields significant better results.

Multi-Perspective Lexical Modeling for Tweet Search. In Chapter 5, I in-

troduce a novel neural ranking model for ad hoc retrieval over social media posts.

This model is motivated by the ineffectiveness of existing neural models on tweet

search, and addresses three major challenges in the social media domain: shorter

document length, informal language use, and heterogeneous relevance signals. The

model uses hierarchical convolutional layers with multiple input-level modeling to

capture different relevance signals from queries, social media posts, as well as URLs

contained in the posts – at the character-, word-, and phrase-levels. Extensive ex-

periments demonstrate the effectiveness of the proposed model and ablation studies

verify the source of effectiveness, suggesting that the customized architecture indeed

captures the characteristics of the domain-specific ranking challenges.

Session Context Modeling for Voice Search. In Chapter 6, I introduce the

novel problem of voice search on an entertainment platform, where user interacts

with voice-enabled remote controller with voice requests to specify the TV programs

to watch. This problem is formally defined as voice query navigation, where sessions
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are modeled as contexts to help disambiguate user’s true intent and recover from

ASR errors. I propose a hierarchical recurrent neural network (HRNN) model to

integrate word- and character-level query representations and to model contextual

dependencies in query sequences. The model not only demonstrates superior results

against competitive baselines in an experimental setting, also is deployed into pro-

duction and improves user experience on millions of queries per day.

Multi-Task Learning for Voice Search. In Chapter 7, I present a multi-task

learning model to address the drawbacks of the HRNN model. By examining deploy-

ment logs, we see that the HRNN model suffers for predicting the newly-added and

rarely-watched programs due to its classification setting. In addition, large-scale

log analysis suggests that query understanding requires performing three related

task simultaneously: program prediction, intent classification, and query tagging.

Therefore, I articulate the design choices of each task and propose a novel neural

architecture that jointly learns how to perform all three tasks. Evaluation on a large

voice query log demonstrates how joint learning of the three tasks improves accuracy

on each task individually. More importantly, the multi-task model provides the ba-

sis of an end-to-end system for handling queries that can draw from approximately

one hundred different intents.
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8.2 Future Work

In the rest of this chapter, I present a few directions that might be interesting

to pursue in the future, complementing the work described throughout the disser-

tation.

Attention-based Neural Networks for Pseudo Trend Modeling. In the neural

temporal framework we introduced in Chapter 3, each document contributes equally to

the estimation. However, it’s obvious that some documents are more important than oth-

ers, thus deserve “special” treatments. For example, a highly-ranked documents can tell us

more about the bursty interval of pseudo trend than a random document. This intuition

also aligns with the superior results of the KDE approach with rank-based weightings (see

Table 4.5). Thus I believe integrating attention mechanism to the temporal modeling can

be promising.

Better Query Trend Modeling. In Chapter 4, we define the potential contribution

of a query term by the burstiness of its query trend. We see two future explorations of

this work. First, how to detect “bad” query trends can be promising. In the previous

experiments, I observe there are some query trends that are bursty but also diverge from

the true relevance distribution. This suggests measuring the goodness of a query trend

only based on burstiness is not enough. Some other linguistic and text-based criteria can

be proposed to filter out those bad trends. Second, incorporating query trend signal into

query expansion techniques can be promising. Many expansion approaches (like RM3)

refine the original query terms through a linear interpolation of the expanded term list.
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Those expanded terms are selected by the frequency of their appearances in the top-ranked

documents. In addition, original query terms are weighted equally in the interpolation. A

possible extension is to consider query trend signal as another source for weighting query

terms and selecting expanded terms. If we can come up with some effective strategy that

map term bursty to relevance, we could expect improvements over traditional lexical feed-

back models.

Combine Relevance Matching with Semantic Matching. Relevance matching aims

to match a query with a document with more emphasis on term co-occurrence. In compari-

son, semantic matching focuses more on understanding semantic meaning of a pair of texts,

which have many applications in NLP, such as question answering, paraphrase detection,

and reading comprehension. The differences in the nature of these two problems motivate

divergences in their model designs. For example, the interaction-based approaches [9, 10]

have been shown more effective on relevance matching problems, while representation-

based approaches [30, 150] are more commonly adopted on semantic matching problems.

A natural question is: would modeling relevance matching and semantic matching be com-

plementary to each other? In fact, I have tried to extend the multi-perspective model in

Chapter 5, which is an interaction-based method for relevance matching, to incorporate

representation-based features for semantic matching. Preliminary experiments on tweet

search and question answering tasks show that effectiveness improvements are indeed ad-

ditive. Further experiments need to be performed to verify the generalizability of this idea

and understand the inner working mechanisms.

Personalization with Periodic Patterns for Voice Search. Currently the HRNN
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and multi-task model described in Chapter 6 and 7 only consider session-level temporality

for disambiguating user’s real intent. Aside from this, long-term temporal patterns reflect-

ing user’s periodic behavior can be complementary signals. It’s quite common that user

watches TV in a periodic manner, such as watching an episode every Monday. Identifying

these periodic patterns, including daily, weekly, and monthly patterns, could be helpful

for disambiguation. Temporal models with attention mechanism are well-suited in these

cases. However, another challenge is that a TV is often shared amongst the household, so

the feasibility of reliable personalization is not as clear as on a smartphone or computer

(i.e., not obvious low-hanging fruit). How to combine personalization and periodic pat-

terns would be an interesting question to explore.
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