116 research outputs found

    Study on Software Defect Prediction Based on SVM and Decision Tree Algorithm

    Get PDF
    Software Defect Prediction is a process of identifying the potential defects in software systems before they occur. In this approach, the dataset containing information about software attributes is used as input, and the output is the prediction of whether the software is defective or not. The input dataset is generally in the form of a CSV file, which contains various software attributes such as cyclomatic complexity, essential complexity, Design Complexity, etc. The output of the defect prediction is binary classification. It is done by using SVM (Support Vector Machine) and a decision tree algorithm. This approach can help software developers identify their systems' defects before they cause any harm or affect the system’s performance

    Development of a Minimal Physiologically-Based Pharmacokinetic Model to Simulate Lung Exposure in Humans Following Oral Administration of Ivermectin for COVID-19 Drug Repurposing

    Get PDF
    SARS-CoV-2 utilizes the IMPα/β1 heterodimer to enter host cell nuclei after gaining cellular access through the ACE2 receptor. Ivermectin has shown antiviral activity by inhibiting the formation of the importin-α (IMPα) and IMPβ1 subunits as well as dissociating the IMPα/β1 heterodimer and has in vitro efficacy against SARS-CoV-2. Plasma and lung ivermectin concentrations vs. time profiles in cattle were used to determine the apparent plasma to lung tissue partition coefficient of ivermectin. This coefficient, together with a simulated geometric mean plasma profile of ivermectin from a published population pharmacokinetic model, was utilized to develop a minimal physiologically-based pharmacokinetic (mPBPK) model. The mPBPK model accurately described the simulated ivermectin plasma concentration profile in humans. The mPBPK model was also used to simulate human lung exposure to ivermectin after 12, 30, and 120 mg oral doses. The simulated ivermectin lung exposures reached a maximum concentration of 772 ng/mL, far less than the estimated 1750 ng/mL IC50 reported for ivermectin against SARS-CoV-2 in vitro. Further studies of ivermectin either reformulated for inhaled delivery or in combination with other antivirals with differing mechanisms of action is needed to assess its therapeutic potential.Fil: Jermain, Brian. University of North Carolina; Estados UnidosFil: Hanafin, Patrick O.. University of North Carolina; Estados UnidosFil: Cao, Yanguang. University of North Carolina; Estados UnidosFil: Lifschitz, Adrian Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Centro de Investigación Veterinaria de Tandil. Universidad Nacional del Centro de la Provincia de Buenos Aires. Centro de Investigación Veterinaria de Tandil. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Centro de Investigación Veterinaria de Tandil; ArgentinaFil: Lanusse, Carlos Edmundo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Centro de Investigación Veterinaria de Tandil. Universidad Nacional del Centro de la Provincia de Buenos Aires. Centro de Investigación Veterinaria de Tandil. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Centro de Investigación Veterinaria de Tandil; ArgentinaFil: Rao, Gauri G.. University of North Carolina; Estados Unido

    Polymyxin B in Combination with Rifampin and Meropenem against Polymyxin B-Resistant KPC-Producing Klebsiella pneumoniae

    Get PDF
    Safe and effective therapies are urgently needed to treat polymyxin-resistant KPC-producing K. pneumoniae and suppress the emergence of resistance. We investigated the pharmacodynamics of polymyxin B, rifampin, and meropenem alone and as polymyxin B-based double and triple combinations against KPC-producing K. pneumoniae . The rate and extent of killing with polymyxin B (1-128mg/L), rifampin (2-16mg/L), and meropenem (10-120mg/L) were evaluated against polymyxin B-susceptible (PB S ) and -resistant (PB R ) clinical isolates using 48h static time-kills. Additionally, humanized triple drug regimens of polymyxin B (C ss : 0.5, 1, 2mg/L), rifampin 600mg every 12 or 8h, and meropenem 1 or 2g every 8h dosed as an extended 3h infusion were simulated over 48h using a one-compartment in vitro dynamic infection model. Serial bacterial counts were measured to quantify pharmacodynamic effect. Population analysis profiles (PAPs) were used to assess the emergence of polymyxin B resistance. Monotherapy was ineffective against both isolates. Polymyxin B with rifampin demonstrated early bactericidal activity against the PB S isolate followed by regrowth by 48h. Bactericidal activity was sustained at all polymyxin B concentrations ≥2 mg/L in combination with meropenem. No two-drug combinations were effective against the PB R isolate, but all simulated triple-drug regimens showed early bactericidal activity by 8h that was sustained over 48h against both strains. PAPs did not reveal the emergence of resistant subpopulations. The triple drug combination of polymyxin B, rifampin, and meropenem may be a viable consideration for the treatment of PB R KPC-producing K. pneumoniae . Further investigation is warranted to optimize triple combination therapy

    Combinatorial pharmacodynamics of polymyxin B and tigecycline against heteroresistant Acinetobacter baumannii

    Get PDF
    The prevalence of heteroresistant Acinetobacter baumannii is increasing. Infections due to these resistant pathogens pose a global treatment challenge. Here, the pharmacodynamic activities of polymyxin B (PMB) (2–20 mg/L) and tigecycline (0.15–4 mg/L) were evaluated as monotherapy and in combination using a 4 × 4 concentration array against two carbapenem-resistant and polymyxin-heteroresistant A. baumannii isolates. Time Kill Experiments was employed at starting inocula of 106 and 108 CFU/mL over 48 h. Clinically relevant combinations of PMB (2 mg/L) and tigecycline (0.90 mg/L) resulted in greater reductions in the bacterial population compared with polymyxin alone by 8 h (ATCC 19606, −6.38 vs. −3.43 log10 CFU/mL; FADDI AB115, −1.38 vs. 2.08 log10 CFU/mL). At 10× the clinically achievable concentration (PMB 20 mg/L in combination with tigecycline 0.90 mg/L), there was bactericidal activity against FADDI AB115 by 4 h that was sustained until 32 h, and against ATCC 19606 that was sustained for 48 h. These studies show that aggressive polymyxin-based dosing in combination with clinically achievable tigecycline concentrations results in early synergistic activity that is not sustained beyond 8 h, whereas combinations with higher tigecycline concentrations result in sustained bactericidal activity against both isolates at both inocula. These results indicate a need for optimised front-loaded polymyxin-based combination regimens that utilise high polymyxin doses at the onset of treatment to achieve good pharmacodynamic activity whilst minimising adverse events

    Triple combination antibiotic therapy for carbapenemase-producing Klebsiella pneumoniae: a systematic review

    Get PDF
    Abstract Background The spread of carbapenemase-producing K. pneumoniae (CPKP) has become a significant problem worldwide. Combination therapy for CPKP is encouraging, but polymyxin resistance to many antibiotics is hampering effective treatment. Combination therapy with three or more antibiotics is being increasingly reported, therefore we performed a systematic review of triple combination cases in an effort to evaluate their clinical effectiveness for CPKP infections. Methods The PubMed database was searched to identify all published clinical outcomes of CPKP infections treated with triple combination therapy. Articles were stratified into two tiers depending on the level of clinical detail provided. A tier 1 study included: antibiotic regimen, regimen-specific outcome, patient status at onset of infection, and source of infection. Articles not reaching these criteria were considered tier 2. Results Thirty-three studies were eligible, 23 tier 1 and ten tier 2. Among tier 1 studies, 53 cases were included in this analysis. The most common infection was pneumonia (31%) followed by primary or catheter-related bacteremia (21%) and urinary tract infection (17%). Different combinations of antibiotic classes were utilized in triple combinations, the most common being a polymyxin (colistin or polymyxin B, 86.8%), tigecycline (73.6%), aminoglycoside (43.4%), or carbapenem (43.4%). Clinical and microbiological failure occurred in 14/39 patients (35.9%) and 22/42 patients (52.4%), respectively. Overall mortality for patients treated with triple combination therapy was 35.8% (19/53 patients). Conclusions Triple combination therapy is being considered as a treatment option for CPKP. Polymyxin-based therapy is the backbone antibiotic in these regimens, but its effectiveness needs establishing in prospective clinical trials

    In Vitro Assessment of Combined Polymyxin B and Minocycline Therapy against Klebsiella pneumoniae Carbapenemase (KPC)-Producing K. pneumoniae

    Get PDF
    ABSTRACT The multidrug resistance profiles of Klebsiella pneumoniae carbapenemase (KPC) producers have led to increased clinical polymyxin use. Combination therapy with polymyxins may improve treatment outcomes, but it is uncertain which combinations are most effective. Clinical successes with intravenous minocycline-based combination treatments have been reported for infections caused by carbapenemase-producing bacteria. The objective of this study was to evaluate the in vitro activity of polymyxin B and minocycline combination therapy against six KPC-2-producing K. pneumoniae isolates (minocycline MIC range, 2 to 32 mg/liter). Polymyxin B monotherapy (0.5, 1, 2, 4, and 16 mg/liter) resulted in a rapid reduction of up to 6 log in bactericidal activity followed by regrowth by 24 h. Minocycline monotherapy (1, 2, 4, 8, and 16 mg/liter) showed no reduction of activity of >1.34 log against all isolates, although concentrations of 8 and 16 mg/liter prolonged the time to regrowth. When the therapies were used in combination, rapid bactericidal activity was followed by slower regrowth, with synergy (60 of 120 combinations at 24 h, 19 of 120 combinations at 48 h) and additivity (43 of 120 combinations at 24 h, 44 of 120 combinations at 48 h) against all isolates. The extent of killing was greatest against the more susceptible polymyxin B isolates (MICs of ≤0.5 mg/liter) regardless of the minocycline MIC. The pharmacodynamic activity of combined polymyxin B-minocycline therapy against KPC-producing K. pneumoniae is dependent on polymyxin B susceptibility. Further in vitro and animal studies must be performed to fully evaluate the efficacy of this drug combination

    Insights Into Patient Variability During Ivacaftor-Lumacaftor Therapy in Cystic Fibrosis

    Get PDF
    Background: The advent of cystic fibrosis transmembrane conductance regulator protein (CFTR) modulators like ivacaftor have revolutionised the treatment of cystic fibrosis (CF). However, due to the plethora of variances in disease manifestations in CF, there are inherent challenges in unified responses under CFTR modulator treatment arising from variability in patient outcomes. The pharmacokinetic (PK) data available for ivacaftor-lumacaftor cystic fibrosis (CF) transmembrane conductance regulator (CFTR) modulator drug combination is limited. Methods: Secondary objectives were to identify (1) patient characteristics and (2) the interactions between ivacaftor-lumacaftor responsible for interindividual variability (IIV). Results: Peak plasma concentrations (Cmax) of ivacaftor - lumacaftor were >10 fold lower than expected compared to label information. The one-way ANOVA indicated that the patient site had an effect on Cmax values of ivacaftor metabolites ivacaftor-M1, ivacaftor-M6, and lumacaftor (p < 0.001, p < 0.001, and p < 0.001, respectively). The Spearman’s rho test indicated that patient weight and age have an effect on the Cmax of lumacaftor (p = 0.003 and p < 0.001, respectively) and ivacaftor metabolite M1 (p = 0.020 and p < 0.001, respectively). Age (p < 0.001) was found to effect on Cmax of ivacaftor M6 and on Tmax of ivacaftor M1 (p = 0.026). A large impact of patient characteristics on the IIV of PK parameters Cmax and Tmax, was observed among the CF patients. Conclusion: Understanding the many sources of variability can help reduce this individual patient variability and ensure consistent patient outcomes

    Paradoxical Effect of Polymyxin B: High Drug Exposure Amplifies Resistance in Acinetobacter baumannii

    Get PDF
    ABSTRACT Administering polymyxin antibiotics in a traditional fashion may be ineffective against Gram-negative ESKAPE ( Enterococcus faecium , Staphylococcus aureus , Klebsiella pneumoniae , Acinetobacter baumannii , Pseudomonas aeruginosa , and Enterobacter species) pathogens. Here, we explored increasing the dose intensity of polymyxin B against two strains of Acinetobacter baumannii in the hollow-fiber infection model. The following dosage regimens were simulated for polymyxin B ( t 1/2 = 8 h): non-loading dose (1.43 mg/kg of body weight every 12 h [q12h]), loading dose (2.22 mg/kg q12h for 1 dose and then 1.43 mg/kg q12h), front-loading dose (3.33 mg/kg q12h for 1 dose followed by 1.43 mg/kg q12h), burst (5.53 mg/kg for 1 dose), and supraburst (18.4 mg/kg for 1 dose). Against both A. baumannii isolates, a rapid initial decline in the total population was observed within the first 6 h of polymyxin exposure, whereby greater polymyxin B exposure resulted in greater maximal killing of −1.25, −1.43, −2.84, −2.84, and −3.40 log 10 CFU/ml within the first 6 h. Unexpectedly, we observed a paradoxical effect whereby higher polymyxin B exposures dramatically increased resistant subpopulations that grew on agar containing up to 10 mg/liter of polymyxin B over 336 h. High drug exposure also proliferated polymyxin-dependent growth. A cost-benefit pharmacokinetic/pharmacodynamic relationship between 24-h killing and 336-h resistance was explored. The intersecting point, where the benefit of bacterial killing was equal to the cost of resistance, was an f AUC 0–24 (area under the concentration-time curve from 0 to 24 h for the free, unbound fraction of drug) of 38.5 mg · h/liter for polymyxin B. Increasing the dose intensity of polymyxin B resulted in amplification of resistance, highlighting the need to utilize polymyxins as part of a combination against high-bacterial-density A. baumannii infections

    Polymyxin B in combination with doripenem against heteroresistant Acinetobacter baumannii : pharmacodynamics of new dosing strategies

    Get PDF
    Polymyxin B is being increasingly utilized as a last resort against resistant Gram-negative bacteria. We examined the pharmacodynamics of novel dosing strategies for polymyxin B combinations to maximize efficacy and minimize the emergence of resistance and drug exposure against Acinetobacter baumannii

    A Mechanism‐based Pharmacokinetic Model of Remdesivir Leveraging Interspecies Scaling to Simulate COVID‐19 Treatment in Humans

    Get PDF
    The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak initiated the global COVID-19 pandemic resulting in 42.9 million confirmed infections and >1.1 million deaths worldwide as of October 26, 2020. Remdesivir is a broad-spectrum nucleotide prodrug shown to be effective against enzootic coronaviruses. The pharmacokinetics (PK) of remdesivir in plasma have recently been described. However, the distribution of its active metabolite nucleoside triphosphate (NTP) to the site of pulmonary infection is unknown in humans. Our objective was to use existing in vivo mouse PK data for remdesivir and its metabolites to develop a mechanism-based model to allometrically scale and simulate the human PK of remdesivir in plasma and NTP in lung homogenate. Remdesivir and GS-441524 concentrations in plasma and total phosphorylated nucleoside concentrations in lung homogenate from Ces1c-/- mice administered 25 or 50 mg/kg of remdesivir subcutaneously were simultaneously fit to estimate PK parameters. The mouse PK model was allometrically scaled to predict human PK parameters to simulate the clinically recommended 200 mg loading dose followed by 100 mg daily maintenance doses administered as 30-minute intravenous infusions. Simulations of unbound remdesivir concentrations in human plasma were below 2.48 μM, the 90% maximal inhibitory concentration for SARS-CoV-2 inhibition in vitro. Simulations of NTP in lung were below high efficacy in vitro thresholds. We have identified a need for alternative dosing strategies to achieve more efficacious concentrations of NTP in human lung, perhaps by reformulating remdesivir for direct pulmonary delivery
    corecore