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ABSTRACT Safe and effective therapies are urgently needed to treat polymyxin-
resistant KPC-producing Klebsiella pneumoniae infections and suppress the emer-
gence of resistance. We investigated the pharmacodynamics of polymyxin B, rifampin,
and meropenem alone and as polymyxin B-based double and triple combinations
against KPC-producing K. pneumoniae isolates. The rates and extents of killing with
polymyxin B (1 to 128 mg/liter), rifampin (2 to 16 mg/liter), and meropenem (10 to
120 mg/liter) were evaluated against polymyxin B-susceptible (PBs) and polymyxin
B-resistant (PBr) clinical isolates using 48-h static time-kill studies. Additionally, hu-
manized triple-drug regimens of polymyxin B (concentration at steady state [Css] val-
ues of 0.5, 1, and 2 mg/liter), 600 mg rifampin every 12 or 8 h, and 1 or 2 g mero-
penem every 8 h dosed as an extended 3-h infusion were simulated over 48 h by
using a one-compartment in vitro dynamic infection model. Serial bacterial counts
were performed to quantify the pharmacodynamic effect. Population analysis pro-
files (PAPs) were used to assess the emergence of polymyxin B resistance. Mono-
therapy was ineffective against both isolates. Polymyxin B with rifampin demon-
strated early bactericidal activity against the PBs isolate, followed by regrowth by 48
h. Bactericidal activity was sustained at all polymyxin B concentrations of �2 mg/li-
ter in combination with meropenem. No two-drug combinations were effective
against the PBr isolate, but all simulated triple-drug regimens showed early bacteri-
cidal activity against both strains by 8 h that was sustained over 48 h. PAPs did not
reveal the emergence of resistant subpopulations. The triple-drug combination of
polymyxin B, rifampin, and meropenem may be a viable consideration for the treat-
ment of PBr KPC-producing K. pneumoniae infections. Further investigation is war-
ranted to optimize triple-combination therapy.

KEYWORDS polymyxin B, carbapenemase, Klebsiella pneumoniae, triple combination,
pharmacodynamics

The global escalation of antimicrobial resistance can be attributed in part to bacterial
production of �-lactamases, which hydrolyze �-lactam antibiotics and ultimately

render them inactive. The production of Klebsiella pneumoniae carbapenemase (KPC)
enzymes by K. pneumoniae confers broad-spectrum resistance to most �-lactam agents,
including carbapenems. Furthermore, these enzymes, expressed by genes on transfer-
able plasmids, have led to widespread resistance throughout the Enterobacteriaceae
family (1–4). The prevalence of infections due to Klebsiella spp. resistant to nearly all
currently available antibiotics has increased over the past decade, and these infections
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are responsible for over 87% of carbapenem-resistant infections per year (5). Mortality
rates of �40% have been reported for patients with KPC-producing K. pneumoniae
infections (6–8). Hence, the Centers for Disease and Control Prevention (CDC) catego-
rized carbapenem-resistant Enterobacteriaceae as an “urgent threat.”

The polymyxins (polymyxin B and colistin [polymyxin E]) are utilized as last-line
therapy against KPC producers (9, 10). However, the increased use of polymyxins has
led to resistance, likely arising from suboptimal dosing coupled with the presence of
heteroresistance (11, 12). KPC-producing K. pneumoniae strains harboring polymyxin
resistance mechanisms have been reported globally (13–16). This poses a serious public
health problem, as infections due to polymyxin-resistant strains are an independent
predictor of mortality (17–19). Given the shortage of novel agents in the drug pipeline
and an absence of clinical studies to evaluate polymyxin dosing strategies, optimization
of existing antibiotics and their combinations is a useful preclinical step for evaluating
novel, safe, and effective treatment options to combat polymyxin-resistant KPC-
producing K. pneumoniae and suppress the emergence of resistance.

Previous in vitro studies demonstrated synergy between two-drug combinations of
polymyxin and rifampin or meropenem against KPC-producing K. pneumoniae (20–24).
Thus, the objective of our study was to evaluate the pharmacodynamic (PD) activities
of polymyxin B, rifampin, and meropenem alone and as polymyxin B-based double and
triple combinations against polymyxin B-sensitive (PBs) and polymyxin B-resistant (PBr)
KPC-producing K. pneumoniae isolates using time-kill studies. Furthermore, using a
funneling approach, we simulated clinically relevant dosing regimens in a dynamic in
vitro one-compartment model to further evaluate the effect of triple therapy on the rate
and extent of killing and the emergence of polymyxin resistance in these K. pneumoniae
isolates.

(This work was presented in part at the 54th Annual Interscience Conference on
Antimicrobial Agents and Chemotherapy [ICAAC], Washington, DC, 5 to 9 September
2014 [52] and at the 55th ICAAC, San Diego, CA, 17 to 21 September 2015 [53].)

RESULTS
Pharmacokinetic (PK) validation. The polymyxin B concentrations at steady state

(Css) (means � standard deviations) were 0.46 � 0.07 mg/liter (n � 8), 1.08 � 0.11
mg/liter (n � 8), and 1.95 � 0.11 mg/liter (n � 8) for targets of 0.5, 1, and 2 mg/liter,
respectively. The rifampin maximum concentration (Cmax) at steady state was 4.67 �

0.24 mg/liter (n � 24). The observed and targeted mean unbound concentration-time
profiles for extended-interval dosing of 1 g and 2 g meropenem used for in vitro
dynamic infection model (IVDIM) studies are shown in Fig. 1. The close agreement
between the observed and target concentrations indicates that the appropriate
concentration-time profiles were achieved over 48 h.

Pharmacodynamic activity. (i) Monotherapy. Time-kill curves for the polymyxin B,
rifampin, and meropenem concentrations evaluated against PBS_BAA1705 and

FIG 1 Pharmacokinetic profiles of extended-interval dosing of meropenem at 1 g (a) and 2 g (b) in one-
compartment models. Solid lines indicate targeted meropenem concentration-time profiles, and closed circles
indicate mean observed concentrations. MEM, meropenem; q8h, every 8 h.
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PBR_KP619 and related pharmacodynamic analyses are shown in Fig. 2 and Table S1 in
the supplemental material. Against PBS_BAA1705, all polymyxin B concentrations
resulted in early bactericidal activity by 2 h. However, clinically relevant concentrations
(unbound Css values of 1 and 2 mg/liter) resulted in regrowth similar to that of the
growth control by 24 h, while 4, 8, and 16 mg/liter polymyxin B resulted in regrowth
by 48 h (Fig. 2a). Against PBR_KP619, clinically relevant concentrations of polymyxin B
performed similarly to the growth control, and only the highest polymyxin B concen-
tration of 128 mg/liter resulted in bactericidal activity over 48 h (Fig. 2d). Rifampin was
ineffective against both isolates and performed similarly to the growth control (Fig. 2b
and e). Meropenem monotherapy demonstrated early activity against both isolates
followed by regrowth beyond 6 h; the highest concentrations of 60 and 120 mg/liter
resulted in a �2-log reduction prior to regrowth (Fig. 2c and f).

(ii) Double-combination therapy. The time-kill curves and pharmacodynamic anal-
yses of polymyxin B-based combinations with rifampin or meropenem are shown in Fig.
3 and Tables 1 and 2. Polymyxin B in combination with rifampin against PBS_BAA1705
resulted in increased killing activity and delayed regrowth compared to monotherapy.
Polymyxin B at 1, 2, and 4 mg/liter in combination with all rifampin concentrations

FIG 2 Time-kill curves with various concentrations of polymyxin B (a and d), rifampin (b and e),
and meropenem (c and f) alone against an inoculum of �106 CFU/ml of polymyxin-sensitive KPC
isolate PBS_BAA1705 (left) and polymyxin-resistant KPC isolate PBR_KP619 (right). PMB, polymyxin
B; RIF, rifampin; MEM, meropenem. The limit of quantification is indicated by black dashed horizontal
lines.
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showed early bactericidal activity followed by regrowth of �5 log10 CFU/ml by 48
h (Fig. 3a to c). Polymyxin B at 8 mg/liter in combination with rifampin resulted in
sustained killing, with no bacteria being detected beyond 2 h (Fig. 3d). Synergy was
observed with polymyxin B at �2 mg/liter in combination with rifampin at all
concentrations (Table 1). Against PBR_KP619, all polymyxin B and rifampin concen-
trations in combination were synergistic and resulted in a �1-log reduction by 8 h
(Fig. 3e to h and Table 1). Polymyxin B at 4 and 8 mg/liter in combination with
rifampin at 5 or 16 mg/liter was bactericidal by 24 h (Fig. 3g and h); however,

FIG 3 Time-kill curves of polymyxin B-based double combinations with rifampin or meropenem and the
triple combination of polymyxin B, rifampin, and meropenem against an inoculum of �106 CFU/ml of
polymyxin-sensitive KPC isolate PBS_BAA1705 (left) and polymyxin-resistant KPC isolate PBR_KP619
(right). Polymyxin B-based double and triple combinations are presented according to the following
polymyxin B concentrations: polymyxin B at 1 mg/liter (a and e), polymyxin B at 2 mg/liter (b and f),
polymyxin B at 4 mg/liter (c and g), and polymyxin B at 8 mg/liter (d and h). PMB, polymyxin B; RIF,
rifampin; MEM, meropenem. The limit of quantification is indicated by black dashed horizontal lines.
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sustained bactericidal activity was seen only with polymyxin B at 4 mg/liter
combined with rifampin at 16 mg/liter and with polymyxin B at 8 mg/liter with
rifampin at 5 or 16 mg/liter (Fig. 3h).

Polymyxin B-based combinations with meropenem against PBS_BAA1705 demon-
strated synergy at all concentrations (Table 2). Polymyxin B at 1 mg/liter in combination
with meropenem at 10, 30, and 60 mg/liter was bactericidal by 2 h but led to regrowth
similar to that of the growth control by 48 h (Fig. 3a). Colonies were undetectable
beyond 4 h with polymyxin B at 2, 4, and 8 mg/liter in combination with all concen-
trations of meropenem (Fig. 3b to d). Polymyxin B in combination with meropenem
demonstrated less activity against PBR_KP619 than against PBS_BAA1705 and in-
creased initial killing compared to that of polymyxin in combination with rifampin, but
activity was attenuated by 24 h (Fig. 3e to h). Polymyxin B with meropenem at
concentrations of �60 mg/liter resulted in a �3-log reduction by 4 h (Fig. 3e to h).
Regrowth similar to that of the growth control was seen between 24 and 32 h, whereas
polymyxin B at 8 mg/liter combined with meropenem at 120 mg/liter resulted in
regrowth of �3 log10 CFU/ml beyond 24 h (Fig. 3h).

(iii) Triple-combination therapy. Time-kill curves and data from pharmacodynamic

analyses of polymyxin B, rifampin, and meropenem concentrations evaluated as a triple
combination are shown in Fig. 3 and Tables 3 and 4. All concentrations of the triple
combination against PBS_BAA1705 resulted in early bactericidal activity by 4 h and
undetectable bacterial counts beyond 8 h (Fig. 3a to d). Synergy was seen only with
polymyxin B at 1 mg/liter in combination with meropenem at 30 mg/liter and rifampin
at 2, 5, or 16 mg/liter (Table 3). Against PBR_KP619, triple combinations with mero-
penem at 30 mg/liter resulted in sustained bactericidal activity beyond 24 h, with the
exception of polymyxin B at 1 mg/liter in combination with meropenem at 30 mg/liter
and rifampin at 5 mg/liter, which led to regrowth close to baseline levels by 48 h (Fig.
3e to h). All triple combinations with meropenem at 120 mg/liter were bactericidal
beyond 8 h (Fig. 3e to h). Synergy against PBR_KP619 was observed at all concentra-
tions (Table 4).

(iv) IVDIM. Based on the effectiveness of the triple combination seen in time-kill

studies, we further investigated the effect of dynamic clinically relevant concentrations
on bacterial killing and the emergence of resistance using an IVDIM. All simulated
triple-combination regimens in the IVDIM resulted in a �99.9% reduction of the initial
inoculum of �7 log10 CFU/ml for both isolates by 8 h and sustained activity for 48 h
(Fig. 4; see also Table S2 in the supplemental material). Against PBS_BAA1705, higher
polymyxin B concentrations resulted in increased early activity, shortening the time to
sustained bactericidal activity by 2 h for polymyxin B at 1 mg/liter and by 4 h for
polymyxin B at 2 mg/liter compared to that for polymyxin B at 0.5 mg/liter (Fig. 4a and
b). However, increasing polymyxin B concentrations against PBR_KP619 did not result
in a substantial increase in the observed killing activity. A more intensive rifampin
regimen with 600 mg every 8 h versus every 12 h provided additional killing activity
(�2-log greater reduction) against PBS_BAA1705 (Fig. 4a and b); however, against
PBR_KP619, there was no notable difference (Fig. 4c and d). Regimens simulating an
extended infusion (EI) of 2 g meropenem every 8 h did not reveal a consistent trend of
increased activity compared to the activity with 1 g every 8 h.

Population analysis profiles (PAPs) of PBS_BAA1705 (MIC, 0.5 mg/liter) did not
contain resistant subpopulations in the presence of polymyxin B concentrations of �1
mg/liter at baseline or 24 or 48 h after exposure to triple-combination regimens in the
IVDIM. In the case of PBR_KP619 (MIC, 64 mg/liter), resistant subpopulations were not
observed in the presence of polymyxin B at concentrations of �64 mg/liter at baseline
or at 24 or 48 h. After exposure to clinically relevant polymyxin B concentrations of 0.5,
1, and 2 mg/liter as a part of the triple-combination regimens evaluated over 48 h,
emergence of polymyxin B resistance was not seen for either isolate (see Fig. S1 and S2
in the supplemental material).
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DISCUSSION

The escalating prevalence of infections caused by multidrug-resistant (MDR) Gram-
negative bacteria with limited therapeutic options has led to the revival of polymyxins.
KPC enzyme expression, a common mechanism of resistance among carbapenem-
resistant Enterobacteriaceae, has further compounded the antibiotic resistance crisis,
resulting in the increased use of polymyxins (22, 23). Recently, increasing numbers of
reports of polymyxin resistance in strains that were previously susceptible have clini-
cians worried, as they could potentially be faced with the challenge of having virtually
no therapeutic alternatives (25).

In the present study, we systematically evaluated the in vitro activities of polymyxin
B, rifampin, and meropenem alone and in combination against PBs and PBr KPC-
producing K. pneumoniae isolates. Monotherapy with these antibiotics was ineffective.
Although polymyxin B showed early bactericidal activity against the PBs strain, the
marked regrowth seen by 24 h is suggestive of selection for resistance and the potential
for clinical failure. Several studies have evaluated treatment outcomes against infec-
tions caused by KPC-producing K. pneumoniae isolates, and despite the susceptibility
profiles of these isolates, monotherapy with an active antibiotic is associated with
greater mortality than combination therapy (8, 26, 27).

The pharmacodynamic activity of polymyxin B with rifampin was increased com-
pared to that with monotherapy with either agent against both isolates. This is
consistent with previous in vitro studies that indicated synergy between polymyxins
and rifampin against KPC-producing K. pneumoniae (21–24). However, beyond 24 h, our
analyses revealed that clinically achievable free-drug concentrations were unable to
provide a sustained reduction in the bacterial burden. Polymyxin B with meropenem
against the PBs isolate resulted in more extensive and sustained killing than did

FIG 4 Time course of the change in the bacterial density in response to triple-antibiotic regimens with polymyxin
B, rifampin, and meropenem against an inoculum of �107 CFU/ml of polymyxin-sensitive KPC isolate PBS_BAA1705
(left) and polymyxin-resistant KPC isolate PBR_KP619 (right) in a dynamic one-compartment infection model.
Shown are data for rifampin at 600 mg dosed every 12 h (a and c) and rifampin at 600 mg dosed every 8 h (b and
d). PMB, polymyxin B; RIF, rifampin; MEM, meropenem; q8h, every 8 h. The limit of quantification is indicated by
the black dashed horizontal line.
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polymyxin B with rifampin. This is in agreement with data from other in vitro studies
that evaluated PBs KPC-producing K. pneumoniae isolates and detected synergy be-
tween polymyxin B and meropenem (21, 28). The combination of polymyxin B and
meropenem has also been shown to significantly reduce mortality in infected rats
compared to either agent as monotherapy (29).

Several retrospective observational studies evaluating clinical outcomes of patients
with infections caused by KPC-producing K. pneumoniae have shown that carbapenem-
containing combinations are associated with lower mortality rates (18, 30). While the
combination of polymyxin and meropenem appears to be effective, there is a paucity
of data regarding the efficacy of this combination in the presence of polymyxin
resistance. Our data suggest that these two-drug combinations lack sustained activity
against highly PBr strains.

Tangden et al. evaluated colistin, rifampin, and meropenem against PBs (colistin MIC,
0.125 mg/liter) metallo-beta-lactamase-producing K. pneumoniae in static time-kill
studies and found that this triple combination was synergistic and bactericidal over 24
h (31). Furthermore, the combination of polymyxin B, rifampin, and doripenem was
bactericidal over 24 h against PBs (polymyxin B MIC, 0.75 to 1 mg/liter) KPC-producing
K. pneumoniae with concentrations at one-quarter the MICs (32). The time-kill results for
the combination of polymyxin B, rifampin, and meropenem presented here are con-
sistent with those findings and further demonstrate the effectiveness of this triple
combination over 48 h against PBr (polymyxin B MIC, 64 mg/liter) KPC-producing K.
pneumoniae. Synergy was found at all concentrations of polymyxin B, rifampin, and
meropenem in combination against the PBr isolate. Clinical data regarding the use of
this triple combination are limited. Biancofiore et al. reported the successful treatment
of a case of multifocal infection due to an MDR Acinetobacter baumannii strain suscep-
tible only to colistin (MIC, 1 mg/liter) by using colistin (2 million units twice daily),
rifampin (600 mg daily), and meropenem (1 g three times daily) in combination over 24
days (33).

To the best of our knowledge, this is the first study to use an IVDIM to evaluate
clinically relevant triple-combination regimens of polymyxin B, rifampin, and mero-
penem against K. pneumoniae over 48 h and to assess their effects on the emergence
of resistance. All simulated regimens comprising polymyxin B (Css, 0.5, 1, and 2
mg/liter), rifampin at 600 mg dosed every 8 or 12 h, and meropenem at 1 or 2 g as an
extended 3-h infusion every 8 h were effective against the resistant isolate. Interest-
ingly, the triple combinations in the present study were bactericidal despite the MIC of
each constituent antibiotic being well above the susceptibility breakpoint. The synergy
seen here may be due to the antibiotics having different molecular targets. Binding of
polymyxin B to lipopolysaccharide on the bacterial outer membrane results in rapid
permeabilization and enhanced penetration by polymyxin B, meropenem, and rifam-
pin, allowing for increased binding to the inner membrane, penicillin-binding protein,
and RNA polymerase, respectively (34). Additionally, given the loss of cell wall integrity
caused by meropenem binding, meropenem can further enhance the access of poly-
myxin B and rifampin to their target sites and increase pharmacodynamic activity.

It is important to acknowledge the potential limitations of our study. First, the in
vitro experiment duration of 48 h may not be long enough to observe a change in
resistance profiles or discern differences between regimens with respect to the emer-
gence of resistance. Second, two strains were evaluated, and the PBs and PBr clinical
isolates may not be representative of all KPC-producing K. pneumoniae isolates. Finally,
the in vitro system is a simplification of the in vivo scenario, and despite its advantages,
the killing activity reported here is in the absence of a host immune system.

The use of combination therapy with more than two agents is a widely accepted
practice for the treatment of infectious diseases such as tuberculosis or human immu-
nodeficiency virus infections, but this approach is not commonplace for the treatment
of infections by MDR Gram-negative bacteria. Safety is of particular concern with
regimens containing multiple antibiotics and intensive dosing. Clinical trials to evaluate
dosing implications of these triple combinations against resistant pathogens would be
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beneficial to assess effective treatment options and enable dose optimization in terms
of safety and efficacy. In addition, studies to evaluate innovative polymyxin dosing
strategies (such as with front loading [35]) will enable the design of novel regimens
with effective and sustained pharmacodynamic activity by managing polymyxin expo-
sure and minimizing the risk of dose-dependent nephrotoxicity, a concern with poly-
myxin use (36, 37).

In conclusion, we demonstrate for the first time that antibiotic regimens consisting
of polymyxin B, rifampin, and meropenem may be viable treatment options against PBr

KPC-producing K. pneumoniae isolates. Further evaluation of these regimens against an
array of isolates expressing resistance-promoting genes and over an extended period
of time is warranted to optimize triple-combination therapy, especially in an age of
emergent polymyxin resistance.

MATERIALS AND METHODS
Bacterial strains. Two strains of K. pneumoniae were utilized in this study: KP619, a clinical blood

isolate obtained from a patient at the Kingman Regional Medical Center, Kingman, AZ, and BAA1705, a
clinical strain obtained from the ATCC. Both isolates are KPC-2 producers and resistant to carbapenems
and rifampin (meropenem MIC of 64 mg/liter and rifampin MIC of 64 mg/liter for both). KP619 has a
nonsense mutation in mgrB and is PBr (PBR_KP619) (polymyxin B MIC, 64 mg/liter). BAA1705 has a
wild-type mgrB sequence and is PBs (PBS_BAA1705) (polymyxin B MIC, 0.5 mg/liter). MICs were deter-
mined in triplicate by broth microdilution according to Clinical and Laboratory Standards Institute
guidelines (54). PCR was performed by using previously described primer sets for �-lactamase Ambler
classes A (GES and KPC), B (NDM, VIM, and IMP), and D (OXA48 and -40) (38) and for mgrB (39). Genomic
DNA was extracted from bacterial isolates by using the EZNA bacterial DNA kit (Omega Biotek, Norcross,
GA). PCR products were analyzed by gel electrophoresis and sequenced (Roswell Park Cancer Institute,
Buffalo, NY). Nucleotide and deduced protein sequences were analyzed by using the Basic Local
Alignment Search Tool (BLAST) (http://www.ncbi.nlm.nih.gov/).

Antimicrobials and media. Mueller-Hinton broth (Becton, Dickinson and Company, Sparks, MD)
supplemented with calcium and magnesium (25.0 mg/liter Ca2� and 12.5 mg/liter Mg2�) (CAMHB) was
used for susceptibility testing and all in vitro models. Stock solutions of polymyxin B (lot number
WXBB4470V; Sigma-Aldrich, St. Louis, MO) and meropenem (lot number LC24337; AK Scientific, Union
City, CA) were freshly prepared in sterile water and saline prior to each experiment. Rifampin (lot number
141157; Fisher Scientific, Fair Lawn, NJ) was dissolved in a minimal amount of methanol before dilution
with sterile saline. All drug solutions were filter sterilized by using a 0.22-�m filter (Fisher Scientific,
Pittsburgh, PA).

Static time-kill kinetics. Static time-kill experiments were performed over 48 h to evaluate the rate
and extent of killing by polymyxin B (1, 2, 4, 8, 16, 64, and 128 mg/liter), rifampin (2, 5, and 16 mg/liter),
and meropenem (10, 30, 60, and 120 mg/liter) alone and by polymyxin B-based combinations with
rifampin or meropenem. Additionally, a 4-by-3-by-2 concentration array of the triple combination of
polymyxin B (1, 2, 4, and 8 mg/liter), rifampin (2, 5, and 16 mg/liter), and meropenem (30 and 120
mg/liter) was evaluated against both isolates. Concentrations were selected to assess a broad range of
free-drug concentrations, including clinically achievable and higher concentrations, for dose optimiza-
tion using the one-compartment model (40–46). Antibiotics were added to a logarithmic-phase broth
culture prepared prior to each experiment by adding fresh bacterial colonies grown overnight to
prewarmed CAMHB (37°C) to achieve the desired initial inoculum of �106 CFU/ml. Serial samples were
obtained at 0, 1, 2, 4, 6, 8, 24, 28, 32, and 48 h for quantification of bacteria.

In vitro dynamic infection model. A one-compartment PK/PD IVDIM described previously (35) was
used to simulate different triple-combination regimens against an initial inoculum of �107 CFU/ml over
48 h. A fresh bacterial stock was injected into the central compartment to achieve the desired inoculum.
The temperature of the central compartment was maintained at 37°C with constant stirring to ensure
homogeneous mixing and instantaneous distribution. A peristaltic pump (Masterflex L/S; Cole-Parmer,
Vernon Hills, IL), with a flow rate of 1.56 ml/min to simulate a half-life (t1/2) of 2 h for rifampin and
meropenem, was used to deliver CAMHB into the central compartment with displacement of an equal
volume (43, 47). Polymyxin B was administered as a constant infusion of 0.5, 1, or 2 mg/liter into the
central compartment throughout the experiment (area under the concentration-time curve to 24 h
[AUC24] of 12, 24, or 48 mg · h/liter), thereby simulating the unbound average steady-state concentra-
tions (Css) and flat concentration-time profiles seen in critically ill patients (40, 41, 48). Rifampin regimens
of 600 mg dosed intravenously every 8 h and every 12 h were simulated by using an automated syringe
pump to inject the drug into the central compartment to achieve a free peak concentration (Cmax) of 5
mg/liter (42, 43, 48). We simulated the current clinical dosing strategy of an initial meropenem bolus
followed by an EI of meropenem (44–46). Meropenem was injected into the central compartment
following bacterial inoculation to attain a Cmax of 120 mg/liter to simulate a meropenem bolus of 1 g over
10 min or of 2 g over 30 min. An EI of meropenem over 3 h dosed every 8 h was achieved by using a
multichannel syringe pump (New Era Pump Systems, Farmingdale, NY) to attain an unbound steady-state
Cmax of 40 or 80 mg/liter, simulating a 3-h EI of 1 or 2 g dosed every 8 h, respectively (44). Simulated
doses were selected to assess a range of clinically tolerable regimens based on data from previously
reported clinical studies (40–46) and to evaluate potential benefits of intensive dosing (polymyxin B
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AUC24 of 48 mg · h/liter, rifampin at 600 mg with a dosing interval of 8 h, and meropenem at 2 g with
a dosing interval of 8 h) for bacterial killing and suppression of resistance. Serial samples were obtained
at 0, 0.5, 1, 2, 4, 6, 8, 24, 28, 32, and 48 h for quantification of bacteria. Additionally, three sets of samples
(500 �l) were stored at �80°C until pharmacokinetic validation.

Quantification of bacteria and population analysis profiles. All bacterial samples were serially
diluted with sterile saline and plated (50 �l) onto Mueller-Hinton II agar (MHA; Becton, Dickinson and
Company, Sparks, MD) plates by using Whitley Automated Spiral Plater II (Don Whitley Scientific, West
Yorkshire, UK). Colony counts (log10 CFU per milliliter) were quantified by using the ProtoCOL HR
automated bacterial colony counter (Synbiosis, Frederick, MD) after 24 h of incubation at 37°C; the limit
of quantification was 2 log10 CFU/ml. To assess for the emergence of polymyxin B resistance, PAPs were
determined by plating samples collected at 0 h (baseline), 24 h, and 48 h onto polymyxin B-containing
MHA (1, 2, 4, 8, 16, 64, 128, and 256 mg/liter) for all regimens evaluated by using the IVDIM.

Pharmacokinetic validation. All samples were analyzed within 4 weeks of their collection. Poly-
myxin B1 and B2 concentrations were quantified by using a validated liquid chromatography-tandem
mass spectrometry (LC-MS/MS) assay (49). Analysis of independently prepared quality control samples
indicated good reproducibility (coefficients of variation of �7.89%) and accuracy (measured concentra-
tions that were �10.5% from target concentrations). The limit of quantification was 0.025 mg/liter.
Rifampin and meropenem concentrations were quantified by high-performance liquid chromatography
(HPLC) methods as previously described and modified for CAMHB (50, 51). The assays were linear (r2 �
0.999) over concentrations from 1 to 15 mg/liter and from 5 to 150 mg/liter, respectively.

Pharmacodynamic analysis. The pharmacodynamic effect was quantified as the change in log10

CFU per milliliter at time t (CFUt) (4, 8, 24, and 48 h) compared to the baseline value (0 h) (CFU0) as
follows: log change � log10(CFUt) � log10(CFU0). Bactericidal activity was defined as a �3-log10 CFU/ml
reduction compared to the initial inoculum. Additivity and synergy were defined as 1- to �2-log10

CFU/ml and �2-log10 CFU/ml greater reductions by the double (or triple) combination than that with the
most active single (or dual) agent in the combination, respectively.

SUPPLEMENTAL MATERIAL
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