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Abstract

The prevalence of heteroresistant Acinetobacter baumannii is increasing. Infections due to these 

resistant pathogens pose a global treatment challenge. Here, the pharmacodynamic activities of 

polymyxin B (PMB) (2–20 mg/L) and tigecycline (0.15–4 mg/L) were evaluated as monotherapy 

and in combination using a 4 × 4 concentration array against two carbapenem-resistant and 

polymyxin-heteroresistant A. baumannii isolates. Time Kill Experiments was employed at starting 

inocula of 106 and 108 CFU/mL over 48 h. Clinically relevant combinations of PMB (2 mg/L) and 

tigecycline (0.90 mg/L) resulted in greater reductions in the bacterial population compared with 

polymyxin alone by 8 h (ATCC 19606, −6.38 vs. −3.43 log10 CFU/mL; FADDI AB115, −1.38 vs. 

2.08 log10 CFU/mL). At 10× the clinically achievable concentration (PMB 20 mg/L in 

combination with tigecycline 0.90 mg/L), there was bactericidal activity against FADDI AB115 by 

4 h that was sustained until 32 h, and against ATCC 19606 that was sustained for 48 h. These 

studies show that aggressive polymyxin-based dosing in combination with clinically achievable 

tigecycline concentrations results in early synergistic activity that is not sustained beyond 8 h, 
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whereas combinations with higher tigecycline concentrations result in sustained bactericidal 

activity against both isolates at both inocula. These results indicate a need for optimised front-

loaded polymyxin-based combination regimens that utilise high polymyxin doses at the onset of 

treatment to achieve good pharmacodynamic activity whilst minimising adverse events.
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baumannii

1. Introduction

The intrinsic impermeability of the outer membrane of Acinetobacter baumannii has allowed 

it to acquire highly effective resistance determinants, making it a reservoir of resistance 

genes. The emergence of multidrug-resistant (MDR) A. baumannii strains resistant to nearly 

all commercially available antibiotics has compromised treatment options against these 

pathogens. Owing to their nephrotoxicity, old antibiotics such as polymyxins have been 

abandoned in favour of newer agents such as tigecycline. However, both of these antibiotics 

are attracting attention as two of the remaining effective antibiotics against MDR A. 
baumannii.

Polymyxin B (PMB) is a polypeptide polymyxin that has not undergone the rigour of 

modern drug development but is increasingly being utilised as a drug of last resort. In 

contrast, tigecycline is a newer broad-spectrum glycylcycline antibiotic that can evade 

tetracycline efflux pumps (TetA–E) in MDR A. baumannii [1]. The emergence of polymyxin 

heteroresistance has been reported among A. baumannii strains and is associated with 

clinical failure. Amplification of existing resistant subpopulations among heteroresistant A. 
baumannii in response to polymyxin monotherapy may be the main driver responsible for 

promoting resistance, especially when there is high bacterial density. The substantial 

increase in resistant subpopulations observed upon exposure to polymyxin suggests that 

sufficiently high drug pressure is required at the start of therapy to eradicate these resistant 

subpopulations. However, PMB monotherapy is not usually a clinical option, since dose 

escalation to achieve sufficiently high concentrations with currently recommended dosing 

protocols risks rapid-onset nephrotoxicity [2]. Furthermore, tigecycline is not recommended 

for severe difficult-to-treat MDR A. baumannii infections, despite their susceptibility to 

tigecycline, owing to the reported clinical failures, poor outcomes and disappointing 

bacteriostatic activity [3].

Consequently, clinicians faced with limited treatment options are resorting to combination 

therapy to treat patients infected with MDR A. baumannii. Optimisation and validation of 

polymyxin-based combinations would therefore be of considerable clinical benefit. The 

pharmacodynamics of combination antimicrobial therapy with PMB and tigecycline is 

poorly defined, especially in situations of high bacterial density and pre-existing polymyxin 

heteroresistance. The objective of the current study was to systemically investigate the in 

vitro pharmacodynamics of PMB and tigecycline at clinically achievable and higher 
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concentrations against polymyxin-heteroresistant A. baumannii isolates and to quantify their 

activity profiles for possible clinical translation.

2. Materials and methods

Two carbapenem-resistant and polymyxin-heteroresistant A. baumannii isolates were used: a 

PMB-susceptible (PBS) reference strain ATCC 19606 [minimum inhibitory concentrations 

(MICs): PMB, 0.5 mg/L; tigecycline, 2.0 mg/L; and meropenem, 16 mg/L] and a PMB-

resistant (PBR) clinical isolate FADDI AB115 (MICs: PMB, >8.0 mg/L; tigecycline, 2.0 

mg/L; and meropenem 16 mg/L). The MICs for tigecycline and PMB were determined in 

quadruplicate by broth dilution [4]. Colistin heteroresistance was defined as the presence of 

bacterial subpopulations able to grow on agar containing >2.0 mg/L colistin when the MIC 

was ≤2.0 mg/L [5]. PMB (Sigma-Aldrich, St Louis, MO) and tigecycline (Pfizer Inc., New 

York, NY) were dissolved in sterile water and saline, respectively, immediately prior to each 

experiment, and fresh cation-adjusted Mueller–Hinton broth (Ca2+ at 25.0 mg/L and Mg2+ at 

12.5 mg/L; Difco, Detroit, MI) prepared prior to each experiment was used for all in vitro 

experiments and for susceptibility testing. Static time–kill experiments were conducted to 

characterise the pharmacodynamics of PMB and tigecycline alone and in combination [6]. A 

4 × 4 concentration array of PMB (2, 8, 16 and 20 mg/L) and tigecycline (0.15, 0.90, 2 and 4 

mg/L) [7] against low inocula (106 CFU/mL) and high inocula (108 CFU/mL) was 

evaluated. Serial cultures were obtained over 48 h. Bacterial counts were determined based 

on quantitative cultures on Mueller–Hinton agar plates after 24 h of incubation at 37 °C.

The pharmacodynamic analysis was performed by evaluating microbiological responses to 

monotherapy and combination therapy by determining the log10 change, calculating the 

change in bacterial density at 4, 8, 24 and 48 h from baseline (0 h) to characterise early and 

late pharmacodynamic activities for monotherapy and combination therapy. Bactericidal 

activity was defined as a ≥3 log10 CFU/mL reduction. Regimens were categorised based on 

the reduction in the initial bacterial inoculum, where activity was defined as at least 1 log10 

CFU/mL reduction compared with the initial inoculum. Additivity and synergy were defined 

as 1.0 to <2 log10 CFU/mL and ≥2 log10 CFU/mL reduction by the PMB + tigecycline 

combination compared with the most active single agent in the combination, respectively 

[8].

3. Results

The results of time–kill studies for PMB and tigecycline alone and in combination against 

low and high inocula of both isolates are summarised in Figs 1 and 2. At the lower inoculum 

of 106 CFU/mL, PMB monotherapy achieved early bactericidal activity, and sustained 

activity was seen with the higher PMB concentrations of 16 mg/L and 20 mg/L against the 

PBS isolate [Fig. 1(A1)]. Tigecycline monotherapy at 0.15 mg/L [Fig. 1(A2)] and 0.90 mg/L 

[Fig. 1(A3)] performed no different from the growth control against the PBS isolate. 

Monotherapy at the higher tigecycline concentrations of 2 mg/L [Fig. 1(A4)] and 4 mg/L 

[Fig. 1(A5)] resulted in >1 log10 reduction by 8 h followed by re-growth. All tigecycline 

concentrations in combination with the clinically achievable PMB concentration of 2 mg/L 

resulted in early bactericidal activity followed by re-growth beyond 8 h, whereas in 
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combination with the higher PMB concentrations of 16 mg/L and 20 mg/L, it resulted in 

sustained bactericidal activity against the PBS isolate [Fig. 1(A2–A5); Table 1].

Against the lower inoculum of the PBR isolate, monotherapy with tigecycline and PMB was 

no different from the growth control [Fig. 1(B1–B5); Table 1]. The clinically achievable 

tigecycline concentration of 0.15 mg/L in combination with all PMB concentrations did not 

result in appreciable sustained activity [Fig. 1(B2); Table 1]. Comparatively, the higher 

tigecycline concentration of 0.90 mg/L in combination with PMB concentrations of 2 mg/L 

and 8 mg/L resulted in early >1 log10 reduction of the PBR inoculum up to 8 h, whilst 

combination with higher PMB concentrations of 16 mg/L and 20 mg/L resulted in sustained 

bactericidal activity up to 24 h [Fig. 1(B3); Table 1]. Tigecycline 2 mg/L and 4 mg/L in 

combination with PMB 8, 16 and 20 mg/L demonstrated synergy and resulted in sustained 

bactericidal activity up to 48 h, whilst combination with PMB 2 mg/L showed a lack of 

activity beyond 8 h against the PBR isolate [Fig. 1(B4 and B5); Table 1].

Monotherapy with either PMB or tigecycline against the higher inoculum of the PBS isolate 

demonstrated a lack of activity at 48 h with the exception of tigecycline 4 mg/L resulting in 

a 1.30 log10 reduction [Fig. 2(A1–A5); Table 1]. Similarly, no activity was seen with 

clinically achievable concentrations of tigecycline 0.15 mg/L and 0.90 mg/L in combination 

with PMB 2 mg/L. Tigecycline 0.15 mg/L in combination with PMB 20 mg/L and 

tigecycline 0.90 mg/L in combination with PMB 16 mg/L and 20 mg/L resulted in >3 log10 

reduction beyond 24 h [Fig. 2(A2 and A3); Table 1]. Tigecycline 2 mg/L and 4 mg/L in 

combination with PMB 2 mg/L resulted in >2 log10 reduction by 8 h, whereas combinations 

with PMB concentrations >2 mg/L were synergistic and resulted in sustained bactericidal 

activity against the PBS isolate beyond 8 h [Fig. 2(A4 and A5); Table 1].

Similar to the high inoculum of the PBS isolate, against the high inoculum of the PBR isolate 

monotherapy with either PMB or tigecycline demonstrated attenuated killing [Fig. 2(B1–

B5)]. Tigecycline 0.15 mg/L in combination with PMB was similar to monotherapy with 

respect to its killing activity [Fig. 2(B2); Table 1]. Tigecycline 0.90 mg/L in combination 

with PMB concentrations of 8, 16 and 20 mg/L resulted in an early reduction of >1 log10 by 

8 h that was followed by re-growth [Fig. 2(B3); Table 1]. Tigecycline 2 mg/L and 4 mg/L in 

combination with PMB 2 mg/L resulted in >1 log10 reduction of the initial high inoculum of 

the PBR isolate. These higher tigecycline concentrations in combination with PMB 8, 16 and 

20 mg/L were synergistic, resulting in sustained killing activity of the PBR isolate [Fig. 2(B4 

and B5); Table 1].

4. Discussion

Treatment of infections caused by A. baumannii is a growing clinical problem due to its 

intrinsic ability to acquire antibiotic resistance genes via multiple mechanisms and to 

develop resistance [9]. A number of previous studies have explored polymyxin and 

tigecycline combinations, with outcomes ranging from indifference to synergy [10–12]. In 

the current study, at the lower inoculum, a clinically achievable PMB concentration of 2 

mg/L combined with tigecycline 0.90 mg/L resulted in a 6.38 log10 reduction by 8 h, which 

was synergistic by 24 h against the PBS reference strain, followed by re-growth by 48 h. 
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These observations from the current study are consistent with the findings of Yilmaz et al 

[12] who showed that colistin in combination with tigecycline against A. baumannii isolates 

in a time–kill study resulted in early bactericidal activity by 4 h at concentrations of 4× MIC 

that was sustained for 24 h (colistin MIC, 0.25 mg/L; tigecycline MIC, 1.0 mg/L). The 

authors attributed the attenuated in vivo activity to the lack of knowledge about colistin 

pharmacokinetics precluding accurate determination of the optimum colistin dose in rats. 

Furthermore, the 48 h endpoint does not accurately reflect the true clinical picture in 

patients, in which there is a time lag before observable colistin plasma concentrations are 

achieved. A loading dose of colistin would therefore be beneficial to reduce this time lag in 

practice [13,14].

Hagihara et al observed that PMB was responsible for the majority of the antibacterial effect 

against four carbapenem-resistant A. baumannii isolates tested with PMB (MIC of 1 mg/L) 

and tigecycline (MICs ranging from 1 mg/L to 4 mg/L) [10]. Similar to our observations, 

there was a lack of appreciable activity with tigecycline monotherapy. As the area under the 

concentration–time curve of the free (unbound) drug (fAUC)/MIC ratio was the 

pharmacodynamic parameter of interest, tigecycline dosing regimens of ≥200 mg daily were 

required to achieve fAUC/MIC exposures of 2.17 and 8.78 for 1 and 2 log10 reductions in 

bacterial density, respectively. This tigecycline regimen of 200 mg resulted in a mean change 

in bacterial density of 0.80 ± 0.59 log10 CFU/mL at 24 h with an initial inoculum of 106 

CFU/mL. Simulated PMB monotherapy regimens of 1 mg/kg resulted in a mean change of 

−2.05 ± 0.68 log10 CFU/mL at 24 h with an initial inoculum of 106 CFU/mL. Combination 

therapy resulted in bactericidal activity with a reduction of 3.31 ± 0.71 log10 CFU/mL at 24 

h [10].

In vitro models of infection may be useful for identifying potential synergy between 

different tigecycline and polymyxin concentrations, evaluated against the more susceptible 

isolates, at certain time points during the time course of the experiment. However, studies 

conducted over 24 h were unable to ascertain whether the suppression of resistant bacterial 

subpopulations is sustained beyond 24 h at the studied concentrations. In an attempt to 

optimise tigecycline regimens, Xie et al concluded that the clinical effectiveness of current 

standard tigecycline dosing was less than adequate given the continued resistance and 

reduced AUC in vivo against MDR A. baumannii strains with enhanced MICs [15]. 

Therefore, bacterial density and duration of in vitro studies are important to consider when 

evaluating these polymyxin combinations. Recently, tigecycline in combination with colistin 

for the treatment of bacteraemia due to extensively drug-resistant A. baumannii was shown 

to be associated with decreased bacteriological clearance and increased 14-day mortality 

[16]. In this study (55 patients met the inclusion criteria: 29 received colistin in combination 

with tigecycline and 26 received colistin with a carbapenem), the crude 14-day mortality 

was markedly higher in the colistin–tigecycline group compared with the colistin–

carbapenem group (35% vs. 15%; P = 0.105); breakthrough bacteraemia due to A. 
baumannii was also 18% higher in the colistin + tigecycline group. Furthermore, over the 

duration of the study, 10 (71.4%) of the 14 non-surviving patients received colistin–

tigecycline (P = 0.010). The findings from the abovementioned study are similar to the 

findings of the current study indicating that pre-existing reduced tigecycline susceptibilities 

among carbapenem-resistant A. baumannii isolates and pretreatment tigecycline MIC ≥ 2 
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mg/L may be indicative of poor clinical outcomes even when tigecycline is used in 

combination. This could be attributed to the fact that tigecycline is bacteriostatic and is 

widely distributed in the tissues resulting in low serum concentrations.

Taken together with the current data, it is prudent to conclude that administering either 

tigecycline or PMB as monotherapy or even in a traditional manner in combination against 

A. baumannii strains with reduced tigecycline susceptibilities is not recommended, 

particularly in infections with heterogeneous susceptibility and markedly higher bacterial 

density [2]. However, against A. baumannii strains susceptible to tigecycline with MICs ≤ 2 

mg/L, at infection sites where tigecycline can achieve adequately high concentrations, these 

data may hold particular relevance in the selection of treatment. As it relates to the clinical 

use of tigecycline, tigecycline-based therapy has been compared with colistin-based therapy 

for the treatment of MDR A. baumannii infections [16,17]. Colistin-based therapy has been 

shown to be associated with lower in-hospital mortality and higher microbial eradication 

rates. The resulting suboptimal drug concentrations in serum and epithelial lining fluids with 

tigecycline makes physicians favour the use of high-dose tigecycline combination regimens 

for the treatment of MDR infections [18].

5. Conclusions

These in vitro results are indicative that against highly resistant strains with high inoculum, 

tigecycline in combination with PMB results only in a transitory effect with clinically 

achievable PMB and tigecycline concentrations. Furthermore, outcomes for patients with 

infections due to MDR A. baumannii are poor and are associated with high mortality, 

highlighting the importance of exploring non-traditional dosing and combinatorial 

approaches. Hence, the results presented here are indicative of the urgent need for newer 

antimicrobial agents with novel targets to help address the lack of viable treatment options 

against such hard-to-treat MDR pathogens.
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Fig. 1. 
Time–kill experiments with polymyxin B (PB) monotherapy (A1, B1) and tigecycline (TIG) 

0.15 mg/L (A2, B2), TIG 0.90 mg/L (A3, B3), TIG 2 mg/L (A4, B4) and TIG 4 mg/L (A5, 

B5) alone and in combination against an initial low inoculum of 106 CFU/mL of 

Acinetobacter baumannii reference strain ATCC 19606 (A) and clinical isolate FADDI 

AB115 (B).
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Fig. 2. 
Time–kill experiments with polymyxin B (PB) monotherapy (A1, B1) and tigecycline (TIG) 

0.15 mg/L (A2, B2), TIG 0.90 mg/L (A3, B3), TIG 2 mg/L (A4, B4) and TIG 4 mg/L (A5, 

B5) alone and in combination against an initial high inoculum of 108 CFU/mL of 

Acinetobacter baumannii reference strain ATCC 19606 (A) and clinical isolate FADDI 

AB115 (B).
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Table 1

Changes in bacterial density (log10 CFU/mL) at 4, 8, 24 and 48 h compared with the initial inoculum (0 h) for 

polymyxin B (PMB) and tigecycline (TIG) combination therapy against the initial inocula of 106 CFU/mL and 

108 CFU/mL of heteroresistant Acinetobacter baumannii reference strain ATCC 19606 and clinical isolate 

FADDI AB115.

Regimens were categorised based on the reduction in the initial bacterial inoculum, where grey shading highlights activity (at least 1 log10 
CFU/mL reduction), orange shading indicates additivity (at least 1.0 to <2 log10 CFU/mL reduction) and green shading indicates synergy (at least 

≥2 log10 CFU/mL reduction) by the combination of PMB and TIG compared with the most active single agent in the combination. Bold type 

indicates bactericidal activity (≥3 log10 CFU/mL reduction).
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