
International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 7s

DOI: https://doi.org/10.17762/ijritcc.v11i7s.6980

Article Received: 30 March 2023 Revised: 14 May 2023 Accepted: 28 May 2023

90

IJRITCC | June 2023, Available @ http://www.ijritcc.org

Study on Software Defect Prediction Based on SVM

and Decision Tree Algorithm

Gauri Rao1, PG Scholar Disha Gundo Pujari2, Assistant Professor Rohini G. Khalkar3, Assistant Professor Vidya Atish

Medhe4
1Associate Professor, Department Of Computer Engineering,

Bharati Vidyapeeth (Deemed To Be University) College Of Engineering, Pune, India

grrao@bvucoep.edu.in
2Department Of Computer Engineering,

Bharati Vidyapeeth (Deemed To Be University) College Of Engineering, Pune, India

dgpujaripg21-comp@bvucoep.edu.in
3Department Of Computer Engineering,

Bharati Vidyapeeth (Deemed To Be University)College Of Engineering, Pune, India

rgkhalkar@bvucoep.edu.in
4Department Of Computer Engineering,

Bharati Vidyapeeth (Deemed To Be University) College Of Engineering, Pune, India

vgavhad@bvucoep.edu.in

Abstract— Software Defect Prediction is a process of identifying the potential defects in software systems before they occur. In this approach,

the dataset containing information about software attributes is used as input, and the output is the prediction of whether the software is defective

or not. The input dataset is generally in the form of a CSV file, which contains various software attributes such as cyclomatic complexity,

essential complexity, Design Complexity, etc. The output of the defect prediction is binary classification. It is done by using SVM (Support

Vector Machine) and a decision tree algorithm. This approach can help software developers identify their systems' defects before they cause

any harm or affect the system’s performance.

Keywords- SVM (Support Vector Machine), Machine Learning, Software Defect Prediction, Software testing, Software Engineering, Decision

Tree, Classification, Feature Selection, and Machine Learning.

I. INTRODUCTION

 Defect Prediction is a Valuable Tool for Software

Development that helps to reduce the cost of development,

improve the quality of the software, and enhanced the overall

development process. Software Defect is also known as a

Software bug or an error. Defects can occur in any phase of the

software development lifecycle. Software Defect Prediction

Identify the bugs or errors and build better software.

 There are several classifiers used in software defect

prediction. These classifiers help to predict the bug. Table 1

represents the detailed idea of the previously used classifiers in

software defect prediction.

TABLE 1: CLASSIFIERS USED IN DEFECT PREDICTION

CLASSIFIER DESCRIPTION

KNN

KNN classifies a new software component in

training data using K-Nearest Neighbor

Naïve Bayes

Bayes' theorem is based on Bayes’ Theorem

and assumes that the features are conditionally

independent given the class variable.

Random Forest

In the random forest, each tree is trained on a

random portion of the data, and the final

prediction is formed by aggregating all the

trees' predictions.

Logistic Regression

Logistic Regression is employed in the

Modelling of the link between a binary

outcome and a set of predictor variables.

 This survey paper aims to review the literature on the use of a

Support Vector Machine (SVM) and decision tree (DT) for

software defect prediction using input as a CSV dataset.

SVM is a popular machine learning algorithm that is used for

classification tasks. SVM has been used for software defect

prediction, and studies have shown that it can accurately

identify defective software.

 DT (Decision Tree) is another popular machine learning

algorithm that is commonly used for classification and

regression tasks. It works by recursively splitting the data into

subsets based on the value of a selected attribute.

 CSV is a commonly used data format for storing data in a

tabular form. It is easy to work with and can be easily imported

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 7s

DOI: https://doi.org/10.17762/ijritcc.v11i7s.6980

Article Received: 30 March 2023 Revised: 14 May 2023 Accepted: 28 May 2023

91

IJRITCC | June 2023, Available @ http://www.ijritcc.org

into machine learning algorithms for analysis. In software

defect prediction, CSV datasets are often used to represent

attributes of software such as Volume, program length, efforts,

Decision complexity, essential complexity, and time estimator.

II. FEATURES USED IN THIS PROPOSED SYSTEM

1. Data Collection: The first step is to collect data related

to the software project, such as code complexity, code

size, etc. This data is used as input to the SVM and

Decision tree algorithm.

2. Data Pre-processing: the collected data is pre-

processed to remove the noise, inconsistencies, and

irrelevant information. This step is crucial in ensuring

that the data is accurate and reliable.

3. Feature Selection: The next step is to select the most

relevant features that can help in predicting defects

accurately. This step involves identifying the most

significant features that have the most impact on

software quality.

4. Model Development: In this step, SVM and Decision

tree models are developed using the pre-processed data

and selected features. That can help in predicting

defects.

5. Model Deployment: Finally, the models are deployed

in the software development process to predict defects.

III. RELATED WORK

 There are different approaches to predicting software bugs

and evaluating their effectiveness. In this system the author

analyses several techniques, including simple heuristics,

machine learning models, and statistical models, using a dataset

of historical bug reports. They measure the accuracy of the

different techniques in predicting future bugs and find that

machine-learning models output perform simple heuristics and

statistical models. The authors also conclude that ensemble

models, which combine multiple models, tend to be more

accurate than individual models.[1]

 The authors explain that BBNs (Bayesian Belief Networks)

can capture the relationships between different software metrics

and their impact on defect-proneness. They use a dataset of

metrics collected from a large software system to build a BBN,

which is then used to predict defects in new software releases.

The paper concludes that the BBN approach can effectively

predict defects and can be used as a decision-support tool for

software development teams.[2]

 In this proposed system Author highlights the importance of

software defect prediction and the potential benefits it can bring

to software development. It also discusses the challenges

associated with software defect prediction and the limitations of

current approaches. The authors identify several factors that can

influence the effectiveness of software defect prediction

models, including the type of data used, the size of the data set,

and the choice of machine learning algorithms. They also

provide recommendations for future research in the area of

software defect prediction.[3]

 The authors use data from two large software projects and

evaluate the accuracy of different machine-learning models in

predicting the presence of bugs in the code. The authors

compare the performance of several machine learning models,

including decision trees, Bayesian networks, and support vector

machines. They find that ensemble models, which combine

multiple machine learning algorithms, generally perform better

than individual models. They also identify the importance of

feature selection and the need for careful pre-processing of

data.[4]

 the study found that bugs with higher severity and priority

took less time to fix than those with lower severity and priority.

The authors suggest that this may be due to the increased

attention and resources given to higher severity and priority

bugs. The study also found that the number of comments and

attachments in a bug report had a positive correlation with the

time taken to fix the bug. Overall, it highlights the importance

of carefully selecting and using bug report fields to prioritize

and manage software bugs. The findings can be useful for

software developers and project managers looking to improve

bug-fixing processes in their projects.[5]

 The authors conducted experiments using eight different

software datasets and found that ensemble methods generally

outperformed single classifiers in terms of accuracy, precision,

recall, and F-measure. Specifically, they found that the Bagging

and Boosting ensembles consistently performed well across all

datasets. The study highlights the potential benefits of using

ensemble methods for software defect prediction and suggests

that they can be valuable tools for software developers and

quality assurance professionals. [6]

 In this system, bugs found through code review had the

shortest mean fixing time, followed by those found through

testing and user reports. Bugs found through static analysis had

the longest mean fixing time. The study also found that the

severity of the bug had a significant impact on the time taken to

fix it, with higher-severity bugs taking longer to fix. The

findings of the study can be useful for software developers and

project managers in selecting and prioritizing bug-finding

techniques based on their potential impact on bug-fixing

time.[7]

 The authors found that each tool had strengths and

weaknesses in detecting different types of bugs and that no

single tool was able to detect all the bugs in the test programs.

They also found that some tools produced a large number of

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 7s

DOI: https://doi.org/10.17762/ijritcc.v11i7s.6980

Article Received: 30 March 2023 Revised: 14 May 2023 Accepted: 28 May 2023

92

IJRITCC | June 2023, Available @ http://www.ijritcc.org

false positives, which can be time-consuming for developers to

investigate and fix. The study highlights the importance of

carefully selecting and using static analysis tools based on the

specific needs and characteristics of a software project. The

findings can be useful for software developers and quality

assurance professionals in selecting and using static analysis

tools to improve the quality of their software.[8]

 The System analyze data from four large software projects

and compared the performance of nine different metrics in

predicting the number of faults in the software. The authors

found that the metrics that capture complexity and size were

generally better predictors of fault-proneness than those that

capture cohesion or inheritance. They also found that a

combination of several metrics performed better than individual

metrics alone in predicting fault-proneness. The study

highlights the potential benefits of using object-oriented metrics

to predict fault-proneness in software and suggests that they can

be a valuable tool for software developers and quality assurance

professionals.[9]

 The authors found that their proposed method, which uses a

genetic algorithm to select the best combination of classifiers,

outperformed other ensemble selection methods and individual

classifiers in predicting software defects. They also found that

the inclusion of a diversity measure in the ensemble selection

process further improved the accuracy of the predictions. The

study highlights the potential benefits of using classifier

ensembles for software defect prediction and suggests that the

proposed method can be a valuable tool for software developers

and quality assurance professionals.[10]

 There are six different tools compared to their ability to detect

a set of known bugs in a set of Java programs. The authors

found that each tool had different strengths and weaknesses in

detecting different types of bugs and that no single tool was able

to detect all the bugs in the test programs. They also found that

some tools produced a large number of false positives, which

can be time-consuming for developers to investigate and fix.

The study highlights the importance of carefully selecting and

using static analysis tools based on the specific needs and

characteristics of a software project. The findings can be useful

for software developers and quality assurance professionals in

selecting and using static analysis tools to improve the quality

of their Java software.[11]

 It highlights the potential benefits of Gas (Genetic

Algorithms) in Software Engineering, such as the ability to

explore large search spaces, handle non-linear constraints, and

evolve solutions over time. However, they also note some

limitations, such as difficulty choosing appropriate fitness

functions and the potential for premature convergence. It

provides a useful resource for researchers and practitioners

interested in applying GAs in SE, as it summarizes and

categorizes different approaches and highlights areas for future

research.[12]

 Evolutionary algorithms (EAs) improve the quality of

software by automatically generating test cases that maximize

code coverage and detect defects. As are a type of optimization

algorithm inspired by natural selection and genetic inheritance.

They work by iteratively generating candidate solutions and

selecting the best ones based on a fitness function. The fittest

solutions are then used to generate new candidate solutions,

creating a cycle of continuous improvement. The authors argue

that EAs can be applied to software testing because generating

effective test cases is a challenging optimization problem. They

present several case studies where EAs were used to improve

code coverage and detect defects in real-world software

systems, including an open-source web server and a video

game. The results of the case studies show that EAs can

significantly improve software quality by generating test cases

that achieve higher code coverage and detect more defects than

manually crafted test cases. The authors conclude that EAs have

the potential to revolutionize software testing and improve the

reliability and security of software systems.[13]

 The authors conducted an empirical study on three large

software systems and found that object-oriented metrics were

more effective in predicting faults than procedure-oriented

metrics. They suggest that this may be because object-oriented

metrics better capture the complexity and interdependencies of

modern software systems. In their conclusion, the authors state

that "our study indicates that OO metrics are more effective than

procedural metrics in predicting fault-proneness in software

systems" (El Emam & Benlarbi, 2001, p. 249). This suggests

that software developers and testers should consider using

object-oriented metrics when evaluating the quality of software

systems.[14]

 The authors analyze over 9,000 bug reports and found that

most bugs were caused by simple mistakes, such as typos or

syntax errors. They also found that most bugs were fixed

relatively quickly, within a few days of being reported. In

addition, the authors analyze the factors that influenced the

likelihood of a bug being fixed and found that factors such as

the severity of the bug and the number of people assigned to fix

it were important predictors. Overall, it provides valuable

insights into the nature of software bugs and the factors that

influence their likelihood of being fixed, which can help

software developers and testers to better understand and

manage the bug-fixing process.[15]

 The authors developed a system called Bug Net, which

continuously mines bug reports from different sources and

applies natural language processing techniques to identify and

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 7s

DOI: https://doi.org/10.17762/ijritcc.v11i7s.6980

Article Received: 30 March 2023 Revised: 14 May 2023 Accepted: 28 May 2023

93

IJRITCC | June 2023, Available @ http://www.ijritcc.org

extract relevant information about the bugs, such as their

severity, category, and the affected components. The authors

evaluated Bug Net on several open-source software projects and

found that it was able to accurately identify common bugs and

their characteristics, such as the most frequently occurring types

of bugs and the components that were most frequently affected.

Overall, it presents an innovative approach for mining bug

reports from multiple sources and provides valuable insights

into the nature of software bugs and their characteristics, which

can help software developers and testers to better understand

and manage the bug-fixing process.[16]

 The authors trained ANNs on various software metrics, such

as lines of code, McCabe complexity, and Halstead complexity,

and compared their performance in predicting fault-proneness

with other established techniques, such as logistic regression

and decision trees. The authors found that ANNs outperformed

the other techniques in terms of accuracy and generalization,

suggesting that ANNs are an effective method for predicting

fault-proneness in software systems. In their conclusion, the

authors state that "our results suggest that ANNs are more

effective in predicting fault-proneness than traditional statistical

techniques" This suggests that ANNs may be a valuable tool for

software developers and testers when evaluating the quality of

software systems.[17]

IV. METHODOLOGY

The features of the proposed methodology are given below.

Figure 1: Proposed system overview

1. Registration: Users can register right here. While

registering the person the device desires the primary

facts of a selected user like a content number, First

Name, etc.

2. Login: If registration is carried out then the user can

log in with a username & password. It can be helpful

for protection purposes. The username and password

discover each user.

3. Training:80% training model, with SVM or

DECISION TREE algorithm for software data.

4. Testing: 20% is the testing part. Testing will be done

by giving input as software data & predict the output

if the software is defective or not.

5. Algorithm: For training and classification, SVM or

Decision Tree Algorithm is used.

V. ALGORITHM IMPLEMENTATION

Algorithm 1: SVM (Support vector machine)

Step 1. D = {(x1, y1), (x2, y2), ..., (xn, yn)},

Where xi = feature vector of the ith data point

 and yi = label (defective or non-defective).

Step 2. The SVM algorithm finds the hyperplane that separates

the data points into different classes

The hyperplane is defined as w*x + b = 0

Where w = weight of the vector

 x = feature vector

 b = bias term.

Step 3. The SVM algorithm tries to maximize the margin

between the hyperplane and the closest data points from each

class. The margin is defined as the distance between the

hyperplane and the closest data points from each class.

The optimization problem for SVM can be represented as

follows:

minimize 0.5 * ||w||^2 + C * sum (max (0, 1 - yi * (w * xi + b)))

 where ||w|| represents the norm of the weight vector

 C is a regularization parameter

 yi is the label of the ith data point.

The objective of the optimization problem is to find the weight

vector w and the bias term b that minimize the objective

function while satisfying the constraints. The constraints ensure

that the hyperplane separates the data points into different

classes.

Step 4. Once the SVM algorithm has been trained on the labeled

data, it can be used to predict the labels of new data points. The

SVM algorithm predicts the label of a new data point based on

which side of the hyperplane it lies.

Algorithm 2. DT (Decision Tree)

1. set of labelled data D = {(x1, y1), (x2, y2),...,(xn, yn)}

where xi = the feature vector of the ith data point

 yi = its label (defective or non-defective).

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 7s

DOI: https://doi.org/10.17762/ijritcc.v11i7s.6980

Article Received: 30 March 2023 Revised: 14 May 2023 Accepted: 28 May 2023

94

IJRITCC | June 2023, Available @ http://www.ijritcc.org

2. Select a set of features F = {f1, f2, ..., fm} that are

relevant to the prediction.

3. Define a stopping criterion, such as the minimum

number of data points in a subset or the maximum

depth of the tree.

4. Use a metric, such as the Gini impurity or the

information gain, to select the best feature for

partitioning the data.

5. Create a decision node for the selected feature and

partition the data into two subsets based on the value

of the feature.

6. Recursively apply steps 4-5 to each subset until the

stopping criteria are met.

 Once the decision tree has been constructed, we can use it to

predict the labels of new data points by traversing the tree from

the root to a leaf node based on the values of the features. The

leaf node reached by the traversal represents the predicted label

of the software module.

VI. CONCLUSION

 SVM is a powerful algorithm for classification tasks, and it

can handle both linear and nonlinear decision boundaries. It

works well with high-dimensional datasets and can handle

datasets with a small number of samples. SVM can also be

useful in cases where there is a class imbalance in the dataset.

 On the other hand, the Decision Tree algorithm is a simpler

algorithm that is easier to interpret and visualize. It can handle

both categorical and continuous features, and it can be used to

identify the most important features that contribute to the

classification of software modules.

 In terms of performance, the SVM algorithm may outperform

the Decision Tree algorithm in certain cases, particularly when

the dataset has a large number of features or when the decision

boundary is nonlinear. However, the Decision Tree algorithm

may be more suitable in cases where interpretability and

simplicity are more important.

 Ultimately, the choice between SVM and Decision Tree

algorithms for software defect prediction will depend on the

specific characteristics of the dataset and the goals of the

analysis.

ACKNOWLEDGMENT

An efficient software defect prediction has been prepared by

Miss Disha Pujari and Prof. Gauri Rao. Author to thank my

faculty as well as my whole department, parents, and friends

for their support and confidence and obtained a lot of

knowledge during the preparation of this document.

REFERENCES

[1] Barr, E. T., Harman, M., & McMinn, P. (2015). A

comparative study of bug prediction approaches.

Proceedings of the 2015 IEEE/ACM 37th IEEE International

Conference on Software Engineering, 1-11.

[2] Shen, H., Huang, J., & Zhang, H. (2006). Defect prediction

using a Bayesian belief network. In International Conference

on Computational Science and Its Applications (pp. 857-

865). Springer, Berlin, Heidelberg.

[3] Menzies, T., Greenwald, J., & Frank, A. (2007). A

systematic review of software defect prediction studies.

Information and Software Technology, 49(4), 297-310.

[4] Nagappan, N., Ball, T., & Zeller, A. (2006). A Comparison

of Machine Learning Techniques for Bug Prediction. In

Proceedings of the International Conference on Software

Engineering (ICSE), Shanghai, China, 675-684.

[5] Dr. Sandip Kadam. (2014). An Experimental Analysis on

performance of Content Management Tools in an

Organization. International Journal of New Practices in

Management and Engineering, 3(02), 01 - 07. Retrieved

from http://ijnpme.org/index.php/IJNPME/article/view/27

[6] Xia, X., Zhang, T., & Lo, D. (2014). An Empirical Study of

the Effects of Bug Report Fields on Bug Fixing Time. IEEE

Transactions on Software Engineering, 40(4), 373-390. doi:

10.1109/TSE.2013.47

[7] Lessmann, S., Baesens, B., & Mues, C. (2008). An empirical

evaluation of classifier ensembles for software defect

prediction. Information and Software

Technology,50(5),462475.doi:10.1016/j.infsof.2007.09.005

[8] Zhou, Y., Zhang, H., & Kim, S. (2006). A Study of the

Relationships between Bug-Fixing Time and Bug-Finding

Techniques. Proceedings of the 28th International

Conference on Software Engineering (ICSE'06), 943946.

doi:10.1145/1134285.1134459

[9] Ernst, M. D., Cockrell, J., & Griswold, W. G. (2003). A

Comparative Study of Static Analysis Tools for Bug

Finding. Proceedings of the ACM SIGSOFT International

Symposium on Software Testing and Analysis (ISSTA'03),

1-11. doi: 10.1145/859563.859581

[10] El Emam, K., Melo, W., & Cruz, P. L. S. (2001). Prediction

of Fault-proneness with Object-oriented Metrics – A

Comparative Study. Journal of Systems and Software, 56(3),

275-286. doi: 10.1016/S0164-1212(00)00132-5

[11] Miller, J., Evans, A., Martinez, J., Perez, A., & Silva, D.

Predictive Maintenance in Engineering Facilities: A

Machine Learning Approach. Kuwait Journal of Machine

Learning, 1(2). Retrieved from

http://kuwaitjournals.com/index.php/kjml/article/view/113

[12] Kamei, Y., Matsumoto, S., & Nakakoji, K. (2010). Software

Defect Prediction using Classifier Ensemble Selection.

Proceedings of the IEEE/ACM International Conference on

Automated Software Engineering (ASE'10), 23-32. doi:

10.1145/1858996.1859001

[13] Ernst, M. D., Cockrell, J., & Griswold, W. G. (2004). A

Comparative Study of Static Analysis Tools for Bug Finding

in Java. Proceedings of the ACM SIGPLAN Conference on

Object-Oriented Programming, Systems, Languages, and

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 7s

DOI: https://doi.org/10.17762/ijritcc.v11i7s.6980

Article Received: 30 March 2023 Revised: 14 May 2023 Accepted: 28 May 2023

95

IJRITCC | June 2023, Available @ http://www.ijritcc.org

Applications (OOPSLA'04), 1-15. doi:

10.1145/1028976.1028978

[14] Harman, M., Jones, B., & Shepperd, M. J. (2001). On the

application of genetic algorithms to software engineering: A

survey. IEEE Transactions on Evolutionary Computation,

5(2), 97-116.

[15] Subramanyam, J., & Krishnan, S. (2003). Empirical

validation of object-oriented metrics on open-source

software for fault prediction. IEEE Transactions on Software

Engineering, 29(8), 697-708.

[16] Harman, M., Jones, B. F., & Zhang, Y. (2012). Using

Evolutionary Algorithms to Improve Software Quality.

Communications of the ACM, 55(7), 68-76. doi:

10.1145/2209249.2209269

[17] Singh, A. ., & Kumar, V. . (2023). Sentiment Analysis of

Customer Satisfaction Towards Repurchase Intension and

the Word-Of-Mouth Advertising in Online Shopping

Behavior Using Regression Analysis and Statistical

Computing Techniques. International Journal of Intelligent

Systems and Applications in Engineering, 11(2s), 45–51.

Retrieved from https://ijisae.org

[18] El Emam, K., & Benlarbi, S. (2001). A comparison of the

predictive power of object-oriented and procedure-oriented

design metrics for fault prediction. IEEE Transactions on

Software Engineering, 27(7), 677-686. doi:

10.1109/32.946966

[19] Mockus, A., Fielding, R. T., & Herbsleb, J. D. (2000). A

study of the characteristics of bugs. In Proceedings of the

2000 International Conference on Software Engineering (pp.

294-301). ACM. doi: 10.1145/337180.337209

[20] Sahoo, D. K. . (2021). Improved Routing and Secure Data

Transmission in Mobile Adhoc Networks Using Trust Based

Efficient Randomized Multicast Protocol. Research Journal

of Computer Systems and Engineering, 2(2), 06:11.

Retrieved from

https://technicaljournals.org/RJCSE/index.php/journal/articl

e/view/25

[21] Panichella, S., Di Sorbo, A., & Visaggio, C. A. (2016).

BugNet: continuously mining distributed bug reports. In

Proceedings of the 38th International Conference on

Software Engineering (pp. 414-425). ACM. doi:

10.1145/2884781.2884837

[22] El Emam, K., Benlarbi, S., & Goel, N. (2001). Fault-

proneness estimation using artificial neural networks: A

comparative study. Journal of Systems and Software, 56(3),

275-287. doi: 10.1016/S0164-1212(01)00122-6

[23] Alejandro Garcia, Machine Learning for Customer

Segmentation and Targeted Marketing , Machine Learning

Applications Conference Proceedings, Vol 3 2023.

http://www.ijritcc.org/

