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Abstract— Software Defect Prediction is a process of identifying the potential defects in software systems before they occur. In this approach, 

the dataset containing information about software attributes is used as input, and the output is the prediction of whether the software is defective 

or not. The input dataset is generally in the form of a CSV file, which contains various software attributes such as cyclomatic complexity, 

essential complexity, Design Complexity, etc. The output of the defect prediction is binary classification. It is done by using SVM (Support 

Vector Machine) and a decision tree algorithm. This approach can help software developers identify their systems' defects before they cause 

any harm or affect the system’s performance. 
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I.  INTRODUCTION  

    Defect Prediction is a Valuable Tool for Software 

Development that helps to reduce the cost of development, 

improve the quality of the software, and enhanced the overall 

development process. Software Defect is also known as a 

Software bug or an error. Defects can occur in any phase of the 

software development lifecycle. Software Defect Prediction 

Identify the bugs or errors and build better software. 

   There are several classifiers used in software defect 

prediction. These classifiers help to predict the bug. Table 1 

represents the detailed idea of the previously used classifiers in 

software defect prediction. 

TABLE 1: CLASSIFIERS USED IN DEFECT PREDICTION 

CLASSIFIER DESCRIPTION 

 

KNN 

KNN classifies a new software component in 

training data using K-Nearest Neighbor  

 

Naïve Bayes 

Bayes' theorem is based on Bayes’ Theorem 

and assumes that the features are conditionally 

independent given the class variable.   

 

Random Forest 

In the random forest, each tree is trained on a 

random portion of the data, and the final 

prediction is formed by aggregating all the 

trees' predictions. 

 

Logistic Regression 

Logistic Regression is employed in the 

Modelling of the link between a binary 

outcome and a set of predictor variables. 

 

   This survey paper aims to review the literature on the use of a 

Support Vector Machine (SVM) and decision tree (DT) for 

software defect prediction using input as a CSV dataset. 

SVM is a popular machine learning algorithm that is used for 

classification tasks. SVM has been used for software defect 

prediction, and studies have shown that it can accurately 

identify defective software.  

   DT (Decision Tree) is another popular machine learning 

algorithm that is commonly used for classification and 

regression tasks. It works by recursively splitting the data into 

subsets based on the value of a selected attribute. 

    CSV is a commonly used data format for storing data in a 

tabular form. It is easy to work with and can be easily imported 
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into machine learning algorithms for analysis. In software 

defect prediction, CSV datasets are often used to represent 

attributes of software such as Volume, program length, efforts, 

Decision complexity, essential complexity, and time estimator. 

II. FEATURES  USED IN THIS PROPOSED SYSTEM 

1. Data Collection: The first step is to collect data related 

to the software project, such as code complexity, code 

size, etc. This data is used as input to the SVM and 

Decision tree algorithm. 

2. Data Pre-processing: the collected data is pre-

processed to remove the noise, inconsistencies, and 

irrelevant information. This step is crucial in ensuring 

that the data is accurate and reliable. 

3. Feature Selection: The next step is to select the most 

relevant features that can help in predicting defects 

accurately. This step involves identifying the most 

significant features that have the most impact on 

software quality.  

4. Model Development: In this step, SVM and Decision 

tree models are developed using the pre-processed data 

and selected features. That can help in predicting 

defects. 

5. Model Deployment: Finally, the models are deployed 

in the software development process to predict defects. 

III. RELATED WORK 

   There are different approaches to predicting software bugs 

and evaluating their effectiveness. In this system the author 

analyses several techniques, including simple heuristics, 

machine learning models, and statistical models, using a dataset 

of historical bug reports. They measure the accuracy of the 

different techniques in predicting future bugs and find that 

machine-learning models output perform simple heuristics and 

statistical models. The authors also conclude that ensemble 

models, which combine multiple models, tend to be more 

accurate than individual models.[1] 

   The authors explain that BBNs (Bayesian Belief Networks) 

can capture the relationships between different software metrics 

and their impact on defect-proneness. They use a dataset of 

metrics collected from a large software system to build a BBN, 

which is then used to predict defects in new software releases. 

The paper concludes that the BBN approach can effectively 

predict defects and can be used as a decision-support tool for 

software development teams.[2] 

   In this proposed system Author highlights the importance of 

software defect prediction and the potential benefits it can bring 

to software development. It also discusses the challenges 

associated with software defect prediction and the limitations of 

current approaches. The authors identify several factors that can 

influence the effectiveness of software defect prediction 

models, including the type of data used, the size of the data set, 

and the choice of machine learning algorithms. They also 

provide recommendations for future research in the area of 

software defect prediction.[3] 

   The authors use data from two large software projects and 

evaluate the accuracy of different machine-learning models in 

predicting the presence of bugs in the code. The authors 

compare the performance of several machine learning models, 

including decision trees, Bayesian networks, and support vector 

machines. They find that ensemble models, which combine 

multiple machine learning algorithms, generally perform better 

than individual models. They also identify the importance of 

feature selection and the need for careful pre-processing of 

data.[4] 

   the study found that bugs with higher severity and priority 

took less time to fix than those with lower severity and priority. 

The authors suggest that this may be due to the increased 

attention and resources given to higher severity and priority 

bugs. The study also found that the number of comments and 

attachments in a bug report had a positive correlation with the 

time taken to fix the bug. Overall, it highlights the importance 

of carefully selecting and using bug report fields to prioritize 

and manage software bugs. The findings can be useful for 

software developers and project managers looking to improve 

bug-fixing processes in their projects.[5] 

   The authors conducted experiments using eight different 

software datasets and found that ensemble methods generally 

outperformed single classifiers in terms of accuracy, precision, 

recall, and F-measure. Specifically, they found that the Bagging 

and Boosting ensembles consistently performed well across all 

datasets. The study highlights the potential benefits of using 

ensemble methods for software defect prediction and suggests 

that they can be valuable tools for software developers and 

quality assurance professionals. [6] 

   In this system, bugs found through code review had the 

shortest mean fixing time, followed by those found through 

testing and user reports. Bugs found through static analysis had 

the longest mean fixing time. The study also found that the 

severity of the bug had a significant impact on the time taken to 

fix it, with higher-severity bugs taking longer to fix. The 

findings of the study can be useful for software developers and 

project managers in selecting and prioritizing bug-finding 

techniques based on their potential impact on bug-fixing 

time.[7] 

   The authors found that each tool had strengths and 

weaknesses in detecting different types of bugs and that no 

single tool was able to detect all the bugs in the test programs. 

They also found that some tools produced a large number of 
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false positives, which can be time-consuming for developers to 

investigate and fix. The study highlights the importance of 

carefully selecting and using static analysis tools based on the 

specific needs and characteristics of a software project. The 

findings can be useful for software developers and quality 

assurance professionals in selecting and using static analysis 

tools to improve the quality of their software.[8] 

   The System analyze data from four large software projects 

and compared the performance of nine different metrics in 

predicting the number of faults in the software. The authors 

found that the metrics that capture complexity and size were 

generally better predictors of fault-proneness than those that 

capture cohesion or inheritance. They also found that a 

combination of several metrics performed better than individual 

metrics alone in predicting fault-proneness. The study 

highlights the potential benefits of using object-oriented metrics 

to predict fault-proneness in software and suggests that they can 

be a valuable tool for software developers and quality assurance 

professionals.[9] 

   The authors found that their proposed method, which uses a 

genetic algorithm to select the best combination of classifiers, 

outperformed other ensemble selection methods and individual 

classifiers in predicting software defects. They also found that 

the inclusion of a diversity measure in the ensemble selection 

process further improved the accuracy of the predictions. The 

study highlights the potential benefits of using classifier 

ensembles for software defect prediction and suggests that the 

proposed method can be a valuable tool for software developers 

and quality assurance professionals.[10] 

    There are six different tools compared to their ability to detect 

a set of known bugs in a set of Java programs.  The authors 

found that each tool had different strengths and weaknesses in 

detecting different types of bugs and that no single tool was able 

to detect all the bugs in the test programs. They also found that 

some tools produced a large number of false positives, which 

can be time-consuming for developers to investigate and fix. 

The study highlights the importance of carefully selecting and 

using static analysis tools based on the specific needs and 

characteristics of a software project. The findings can be useful 

for software developers and quality assurance professionals in 

selecting and using static analysis tools to improve the quality 

of their Java software.[11] 

   It highlights the potential benefits of Gas (Genetic 

Algorithms) in Software Engineering, such as the ability to 

explore large search spaces, handle non-linear constraints, and 

evolve solutions over time. However, they also note some 

limitations, such as difficulty choosing appropriate fitness 

functions and the potential for premature convergence. It 

provides a useful resource for researchers and practitioners 

interested in applying GAs in SE, as it summarizes and 

categorizes different approaches and highlights areas for future 

research.[12] 

   Evolutionary algorithms (EAs) improve the quality of 

software by automatically generating test cases that maximize 

code coverage and detect defects. As are a type of optimization 

algorithm inspired by natural selection and genetic inheritance. 

They work by iteratively generating candidate solutions and 

selecting the best ones based on a fitness function. The fittest 

solutions are then used to generate new candidate solutions, 

creating a cycle of continuous improvement. The authors argue 

that EAs can be applied to software testing because generating 

effective test cases is a challenging optimization problem. They 

present several case studies where EAs were used to improve 

code coverage and detect defects in real-world software 

systems, including an open-source web server and a video 

game. The results of the case studies show that EAs can 

significantly improve software quality by generating test cases 

that achieve higher code coverage and detect more defects than 

manually crafted test cases. The authors conclude that EAs have 

the potential to revolutionize software testing and improve the 

reliability and security of software systems.[13] 

   The authors conducted an empirical study on three large 

software systems and found that object-oriented metrics were 

more effective in predicting faults than procedure-oriented 

metrics. They suggest that this may be because object-oriented 

metrics better capture the complexity and interdependencies of 

modern software systems. In their conclusion, the authors state 

that "our study indicates that OO metrics are more effective than 

procedural metrics in predicting fault-proneness in software 

systems" (El Emam & Benlarbi, 2001, p. 249). This suggests 

that software developers and testers should consider using 

object-oriented metrics when evaluating the quality of software 

systems.[14] 

   The authors analyze over 9,000 bug reports and found that 

most bugs were caused by simple mistakes, such as typos or 

syntax errors. They also found that most bugs were fixed 

relatively quickly, within a few days of being reported. In 

addition, the authors analyze the factors that influenced the 

likelihood of a bug being fixed and found that factors such as 

the severity of the bug and the number of people assigned to fix 

it were important predictors. Overall, it provides valuable 

insights into the nature of software bugs and the factors that 

influence their likelihood of being fixed, which can help 

software developers and testers to better understand and 

manage the bug-fixing process.[15] 

   The authors developed a system called Bug Net, which 

continuously mines bug reports from different sources and 

applies natural language processing techniques to identify and 
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extract relevant information about the bugs, such as their 

severity, category, and the affected components. The authors 

evaluated Bug Net on several open-source software projects and 

found that it was able to accurately identify common bugs and 

their characteristics, such as the most frequently occurring types 

of bugs and the components that were most frequently affected. 

Overall, it presents an innovative approach for mining bug 

reports from multiple sources and provides valuable insights 

into the nature of software bugs and their characteristics, which 

can help software developers and testers to better understand 

and manage the bug-fixing process.[16] 

   The authors trained ANNs on various software metrics, such 

as lines of code, McCabe complexity, and Halstead complexity, 

and compared their performance in predicting fault-proneness 

with other established techniques, such as logistic regression 

and decision trees. The authors found that ANNs outperformed 

the other techniques in terms of accuracy and generalization, 

suggesting that ANNs are an effective method for predicting 

fault-proneness in software systems. In their conclusion, the 

authors state that "our results suggest that ANNs are more 

effective in predicting fault-proneness than traditional statistical 

techniques" This suggests that ANNs may be a valuable tool for 

software developers and testers when evaluating the quality of 

software systems.[17] 

IV. METHODOLOGY 

The features of the proposed methodology are given below. 

            
Figure 1: Proposed system overview 

1. Registration: Users can register right here. While 

registering the person the device desires the primary 

facts of a selected user like a content number, First 

Name, etc. 

2. Login: If registration is carried out then the user can 

log in with a username & password. It can be helpful 

for protection purposes. The username and password 

discover each user. 

3. Training:80% training model, with SVM or 

DECISION TREE algorithm for software data. 

4. Testing: 20% is the testing part. Testing will be done 

by giving input as software data & predict the output 

if the software is defective or not. 

5. Algorithm: For training and classification, SVM or 

Decision Tree Algorithm is used. 

V. ALGORITHM IMPLEMENTATION 

Algorithm 1: SVM (Support vector machine) 

Step 1. D = {(x1, y1), (x2, y2), ..., (xn, yn)}, 

Where xi = feature vector of the ith data point  

     and yi = label (defective or non-defective). 

Step 2. The SVM algorithm finds the hyperplane that separates 

the data points into different classes 

The hyperplane is defined as w*x + b = 0 

Where w = weight of the vector 

            x = feature vector 

            b = bias term. 

Step 3. The SVM algorithm tries to maximize the margin 

between the hyperplane and the closest data points from each 

class. The margin is defined as the distance between the 

hyperplane and the closest data points from each class. 

The optimization problem for SVM can be represented as 

follows: 

minimize 0.5 * ||w||^2 + C * sum (max (0, 1 - yi * (w * xi + b))) 

 where ||w|| represents the norm of the weight vector 

                      C is a regularization parameter  

                      yi is the label of the ith data point. 

The objective of the optimization problem is to find the weight 

vector w and the bias term b that minimize the objective 

function while satisfying the constraints. The constraints ensure 

that the hyperplane separates the data points into different 

classes. 

Step 4. Once the SVM algorithm has been trained on the labeled 

data, it can be used to predict the labels of new data points. The 

SVM algorithm predicts the label of a new data point based on 

which side of the hyperplane it lies. 

Algorithm 2. DT (Decision Tree) 

1. set of labelled data D = {(x1, y1), (x2, y2),...,(xn, yn)} 

where xi = the feature vector of the ith data point  

                      yi = its label (defective or non-defective). 
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2. Select a set of features F = {f1, f2, ..., fm} that are 

relevant to the prediction. 

3. Define a stopping criterion, such as the minimum 

number of data points in a subset or the maximum 

depth of the tree. 

4. Use a metric, such as the Gini impurity or the 

information gain, to select the best feature for 

partitioning the data. 

5. Create a decision node for the selected feature and 

partition the data into two subsets based on the value 

of the feature. 

6. Recursively apply steps 4-5 to each subset until the 

stopping criteria are met. 

    Once the decision tree has been constructed, we can use it to 

predict the labels of new data points by traversing the tree from 

the root to a leaf node based on the values of the features. The 

leaf node reached by the traversal represents the predicted label 

of the software module. 

VI. CONCLUSION 

   SVM is a powerful algorithm for classification tasks, and it 

can handle both linear and nonlinear decision boundaries. It 

works well with high-dimensional datasets and can handle 

datasets with a small number of samples. SVM can also be 

useful in cases where there is a class imbalance in the dataset.  

   On the other hand, the Decision Tree algorithm is a simpler 

algorithm that is easier to interpret and visualize. It can handle 

both categorical and continuous features, and it can be used to 

identify the most important features that contribute to the 

classification of software modules. 

   In terms of performance, the SVM algorithm may outperform 

the Decision Tree algorithm in certain cases, particularly when 

the dataset has a large number of features or when the decision 

boundary is nonlinear. However, the Decision Tree algorithm 

may be more suitable in cases where interpretability and 

simplicity are more important. 

   Ultimately, the choice between SVM and Decision Tree 

algorithms for software defect prediction will depend on the 

specific characteristics of the dataset and the goals of the 

analysis.  
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