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ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak initiated the 

global COVID-19 pandemic resulting in 42.9 million confirmed infections and >1.1 million deaths 

worldwide as of October 26, 2020. Remdesivir is a broad-spectrum nucleotide prodrug shown to be 

effective against enzootic coronaviruses. The pharmacokinetics (PK) of remdesivir in plasma have 

recently been described. However, the distribution of its active metabolite nucleoside triphosphate 

(NTP) to the site of pulmonary infection is unknown in humans. Our objective was to use existing in 

vivo mouse PK data for remdesivir and its metabolites to develop a mechanism-based model to 

allometrically scale and simulate the human PK of remdesivir in plasma and NTP in lung 

homogenate. Remdesivir and GS-441524 concentrations in plasma and total phosphorylated 

nucleoside concentrations in lung homogenate from Ces1c-/- mice administered 25 or 50 mg/kg of 

remdesivir subcutaneously were simultaneously fit to estimate PK parameters. The mouse PK model 

was allometrically scaled to predict human PK parameters to simulate the clinically recommended 

200 mg loading dose followed by 100 mg daily maintenance doses administered as 30-minute 

intravenous infusions. Simulations of unbound remdesivir concentrations in human plasma were 

below 2.48 μM, the 90% maximal inhibitory concentration for SARS-CoV-2 inhibition in vitro. 

Simulations of NTP in lung were below high efficacy in vitro thresholds. We have identified a need 

for alternative dosing strategies to achieve more efficacious concentrations of NTP in human lung, 

perhaps by reformulating remdesivir for direct pulmonary delivery.
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INTRODUCTION

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak in Wuhan, 

China in December 2019 initiated a global pandemic, known as COVID-19,1 resulting in over 42.9 

million confirmed infections and >1.1 million deaths worldwide as of October 26, 2020. In order to 

infiltrate the host cell, SARS-CoV-2 binds to angiotensin-converting enzyme 2 (ACE-2) receptors, 

located in the nose with decreasing expression throughout the lower respiratory tract.2–4 Symptomatic 

COVID-19 patients experience typical symptoms of viral infection such as fever, cough, shortness of 

breath, and fatigue.5 While many infected individuals experience mild symptoms including dry cough 

and sore throat, a significant proportion subsequently develop peripheral lung symptoms, the most 

serious of which is viral interstitial pneumonia.6 The progression from initial upper airways disease to 

serious life-threatening illness, if not death, occurs rapidly and requires urgent respiratory support.7

Remdesivir (GS-5734™), originally developed for treatment of Ebola virus,8,9 is a broad-

spectrum nucleotide prodrug effective against many endemic, emerging, and enzootic coronaviruses 

(CoV).10–13 Remdesivir is highly potent with a poor solubility profile (aqueous solubility 0.339 

mg/mL, 6 g of solubilizer, sulfobutylether β-cyclodextrin sodium, SBECD for 5 mg/mL remdesivir, 

logP 2.0-2.2, pKa 10.23) and is primarily renally eliminated (74%).14 Currently approved remdesivir 

dosing regimen is an intravenously administered 200 mg loading dose on day 1 followed by daily 

maintenance dose of 100 mg as a 30-minute infusion for up to 10 days.15 

Remdesivir is a monophosphoramidate prodrug of the C-adenosine analog (GS-441524), both 

of which are metabolized into an active nucleoside triphosphate (NTP) within host cells. Remdesivir 

is hydrolyzed within host cells into an alanine metabolite (GS-704277), which is further metabolized 

into mono- and di-phosphate derivatives before undergoing triphosphorylation.8,16 The triphosphate 

form of nucleotide analogue remdesivir acts as a substrate for viral RNA-dependent RNA polymerase 

(RdRp) that determines the replication of SARS-CoV-2.17 NTP competes with adenosine triphosphate 

(ATP) for incorporation as a substitute into the nascent RNA strand resulting in premature termination 

of RNA synthesis.

Recently, remdesivir received US Food and Drug Administration (FDA) approval for the 

treatment of adult and pediatric patients 12 years of age and older and weighing at least 40 kilograms A
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for the treatment of COVID-19 requiring hospitalization.18–20 Grein et al. observed that 68% of 

patients with COVID-19 (N=53) treated with remdesivir on a compassionate-use basis showed 

improvements in oxygen support status compared to baseline.10 Adaptive Covid-19 Treatment Trial 

(ACTT-1), a placebo-controlled clinical trial of intravenous remdesivir in adult patients hospitalized 

with COVID-19 with lower respiratory involvement (N=1062) found remdesivir to be superior to 

placebo in shortening the median time to recovery, defined as hospital discharge or hospitalization for 

infection-control purposes only, from 15 (95%CI: 13–18) to 10 (95%CI: 9–11) days.19 Another 

randomized open label clinical trial compared treatment with intravenous remdesivir as a 5-day 

(N=197) and 10-day (N=200) treatment in patients with severe COVID-19 based on the evaluation of 

clinical status on Day 14. Overall, there was no significant difference in clinical status of patients on 

day 14 and there were no statistically significant differences in recovery rates or mortality rates 

between the two groups.20 Another clinical study found patients with COVID-19 symptoms randomly 

assigned to remdesivir (N=158) had a numerically faster time to clinical improvement, although not 

statistically significant compared to those receiving placebo (N=79) over a duration of 10 days or 

less.21 

While the plasma pharmacokinetics (PK) of remdesivir have been recently described in 

humans22, the distribution of its active metabolite to the site of infection has not. Allometric scaling of 

PK models developed using available preclinical in vivo data enables the simulation of target site PK 

in humans, with the assumption that physiological factors are related to body weight.23 Additionally, 

allometric scaling is applicable to drugs that are primarily excreted renally (~75%),24,25 such as 

remdesivir. We can use existing in vivo mouse PK data for remdesivir and its metabolites to develop a 

mechanism-based model and simulate human PK of remdesivir and its active metabolite, NTP, at 

target sites of infection. In vitro efficacy experiments of SARS-CoV-2 infectious viral load have 

shown the IC50 and IC90 for inhibition in Calu3 2B4 cells by remdesivir to be 0.28 and 2.48 μM, 

respectively, and by GS-441524 to be 0.62 and 1.34 μM, respectively.26 Our objective was to use a 

mechanistically-informed modeling approach leveraging published in vitro efficacy targets to 

determine the adequacy of current dosing regimens. This approach will develop a more granular 

understanding of treatment efficacy in patients infected with SARS-CoV-2 and aid in identifying 

alternative dosing strategies.A
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METHODS

Pharmacokinetic Data

PK analyses were performed using in vivo plasma PK data based on a study previously 

conducted in female Ces1c-/- mice (from C57BL/6J strain) administered 25 mg/kg of remdesivir.13 

Briefly, plasma samples were collected from mice (n=3 per time point) at 8 time points (0.25, 0.5, 1, 

2, 4, 6, 8, 12 hours) following subcutaneous injection. Samples were stored at −80°C until they were 

assayed for total remdesivir (MW=602.6 g/mol) and GS-441524 metabolite (MW=291.26 g/mol) 

concentrations by liquid chromatography (LC) and dual mass spectrometry (MS-MS). 

In a separate experiment, lung PK was evaluated following administration of two remdesivir 

doses of 25 mg/kg twice daily or 50 mg/kg once daily subcutaneously to female Ces1c-/- mice.13 

Terminal lung samples obtained at 1, 2, 6, 12, and 24 hours after administration were snap frozen, 

pulverized, weighed, homogenized, and dried. Total nucleosides consisting of nucleoside 

monophosphate, diphosphate, and triphosphate isolated from lung homogenate were analyzed by LC-

MS/MS. Published and publicly available PK studies were designed by Gilead Sciences and 

conducted at CRO Jackson. 

Model Development

Remdesivir and GS-441524 (referred to as Nuc) concentrations in plasma and total 

phosphorylated nucleoside (referred to as TNuc) concentrations in the lungs were simultaneously fit 

to estimate model parameters using the naïve pooled approach in Phoenix WinNonlin 8.2 (Certara 

L.P., Princeton, NJ). Model discrimination was performed with regards to model structure and error 

model based on significant change in log-likelihood ratio, minimization of Akaike information 

criterion (AIC), parameter estimates, and visual assessment of diagnostic plots. 
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Remdesivir plasma PK was described by a one-compartment model with first-order absorption 

and elimination via irreversible metabolism to Nuc by hydrolases. The absorption and metabolism of 

remdesivir were described by:

𝑑𝐴𝑅𝑒𝑚,𝐴𝑏𝑠

𝑑𝑡 = ― 𝑘𝑎 ∙ 𝐴𝑅𝑒𝑚,𝐴𝑏𝑠 (1)

𝑑𝐴𝑅𝑒𝑚,𝑃𝑙𝑎𝑠𝑚𝑎

𝑑𝑡 = 𝑘𝑎 ∙ 𝐴𝑅𝑒𝑚,𝐴𝑏𝑠 ― 𝑘𝑚𝑒𝑡 ∙ 𝐴𝑅𝑒𝑚,𝑃𝑙𝑎𝑠𝑚𝑎
(2)

where  is the first-order absorption rate constant and  is the first-order elimination rate constant 𝑘𝑎 𝑘𝑚𝑒𝑡

for remdesivir via irreversible metabolism to Nuc in plasma. The concentration of remdesivir in 

plasma was determined by the ratio of the amount of remdesivir in plasma, , and the 𝐴𝑅𝑒𝑚,𝑃𝑙𝑎𝑠𝑚𝑎

volume of distribution of remdesivir in plasma, .𝑉𝑅𝑒𝑚

Nuc PK was described by a two-compartment model, where Nuc formation from remdesivir 

and its elimination from plasma were both described by first-order rate constants. Equations 3 and 4 

describe Nuc PK in plasma and tissue, respectively:

𝑑𝐴𝑁𝑢𝑐,𝑃𝑙𝑎𝑠𝑚𝑎

𝑑𝑡 = 𝑘𝑚𝑒𝑡 ∙ 𝐴𝑅𝑒𝑚,𝑃𝑙𝑎𝑠𝑚𝑎 ― (𝑘𝐿𝑢𝑛𝑔 +
𝑄𝑁𝑢𝑐

𝑉𝑁𝑢𝑐,𝑃𝑙𝑎𝑠𝑚𝑎) ∙ 𝐴𝑁𝑢𝑐,𝑃𝑙𝑎𝑠𝑚𝑎 +
𝑄𝑁𝑢𝑐

𝑉𝑁𝑢𝑐,𝑇𝑖𝑠𝑠𝑢𝑒
∙ 𝐴𝑁𝑢𝑐,𝑇𝑖𝑠𝑠𝑢𝑒 (3)

𝑑𝐴𝑁𝑢𝑐,𝑇𝑖𝑠𝑠𝑢𝑒

𝑑𝑡 =
𝑄𝑁𝑢𝑐

𝑉𝑁𝑢𝑐,𝑃𝑙𝑎𝑠𝑚𝑎
∙ 𝐴𝑁𝑢𝑐,𝑃𝑙𝑎𝑠𝑚𝑎 ―

𝑄𝑁𝑢𝑐

𝑉𝑁𝑢𝑐,𝑇𝑖𝑠𝑠𝑢𝑒
∙ 𝐴𝑁𝑢𝑐,𝑇𝑖𝑠𝑠𝑢𝑒

(4)

where  and  describe Nuc volume in plasma and tissue, respectively.  is the 𝑉𝑁𝑢𝑐,𝑃𝑙𝑎𝑠𝑚𝑎 𝑉𝑁𝑢𝑐,𝑇𝑖𝑠𝑠𝑢𝑒 𝑄𝑁𝑢𝑐

intercompartmental clearance of Nuc between plasma and tissue. The Nuc plasma concentration was 

obtained by dividing the amount of Nuc in the plasma , by , 𝐴𝑁𝑢𝑐,𝑃𝑙𝑎𝑠𝑚𝑎 𝑉𝑁𝑢𝑐,𝑃𝑙𝑎𝑠𝑚𝑎.

The total phosphorylated nucleoside PK consisting of mono-, di-, and triphosphate nucleoside 

metabolites in the lung (TNuc) were described by a single compartment. Distribution of Nuc in the 

lung and subsequent intracellular conversion of Nuc into TNuc and intracellular clearance of the 

formed TNuc were described using first order rates:A
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𝑑𝐴𝑁𝑇𝑃,𝐿𝑢𝑛𝑔

𝑑𝑡 = 𝑘𝐿𝑢𝑛𝑔 ∙ 𝐴𝑁𝑢𝑐,𝑃𝑙𝑎𝑠𝑚𝑎 ―
𝐶𝐿𝑇𝑁𝑢𝑐,  𝐿𝑢𝑛𝑔

𝑉𝑇𝑁𝑢𝑐,𝐿𝑢𝑛𝑔
∙ 𝐴𝑇𝑁𝑢𝑐,𝐿𝑢𝑛𝑔 (5)

where  is the combined first-order rate constant of Nuc distribution and conversion to TNuc 𝑘𝐿𝑢𝑛𝑔

within the lung,  is the intracellular clearance of TNuc, and  is the cumulative 𝐶𝐿𝑇𝑁𝑢𝑐,𝐿𝑢𝑛𝑔 𝑉𝑇𝑁𝑢𝑐,𝐿𝑢𝑛𝑔

volume of distribution of TNuc. The TNuc concentration in the lung was described by the ratio of the 

amount, , and the volume of distribution of TNuc in the lung, . 𝐴𝑇𝑁𝑢𝑐,𝐿𝑢𝑛𝑔 𝑉𝑇𝑁𝑢𝑐,𝐿𝑢𝑛𝑔

Error models assumed pooled estimates of inter- and intra-individual mouse variability at each 

sampling time point to describe the residual unexplained variability. Additive, proportional, and 

proportional error models were evaluated to describe residual variability separately for remdesivir, 

and its metabolites Nuc and TNuc. 

Allometric Scaling

Allometric scaling was used to predict human PK parameters for remdesivir and Nuc in 

plasma and TNuc in lung based on PK parameters estimated in mice. Allometric scaling was 

performed using fixed body weights for humans ( ) and mice ( ) of 70 kg and 0.025 kg, 𝐵𝑊𝐻 𝐵𝑊𝑀

respectively, to scale PK parameters from mice ( ) to humans ( ):𝑃𝑀 𝑃𝐻

𝑃𝐻 = 𝑃𝑀 ∙ (𝐵𝑊𝐻

𝐵𝑊𝑀)
𝑏

(6)

where the values for exponent b for volume, clearance, and first-order rate constant parameters were 

1, 0.75, and -0.25, respectively.27 Human PK parameters calculated based on simulations performed 

using allometrically scaled human PK parameters were compared to human PK parameters obtained 

by modeling digitized data from a single ascending dose remdesivir PK study in healthy volunteers 

(see supplementary Methods). 
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Simulations

Allometrically scaled human PK parameters were used to simulate clinical dosing regimens of 

remdesivir.10 Simulated PK profiles included remdesivir and Nuc plasma concentrations and TNuc 

lung concentrations. Individual simulations without output error were performed in ADAPT5.28 

Remdesivir and Nuc simulated plasma concentrations were compared to PK in healthy human 

volunteers. Briefly, based on European Medicines Agency (EMA) compassionate use of remdesivir, 

healthy volunteers received a 30-minute intravenous infusion of 200 mg remdesivir on day 1 and 100 

mg daily for 4 days.29 Mean maximum concentration (Cmax), area under the curve over the dosing 

interval (AUCτ), and half-life data for remdesivir and Nuc were recorded on day 1 (N = 8) and day 5 

(N = 7). Simulations of TNuc in the lung were compared to previously described in vitro data13 and 

clinical data in healthy human volunteers.29 Using published protein binding values29 to determine the 

free drug concentrations, the simulated free drug concentrations were compared to the in vitro-

determined average half-maximal (IC50) and 90% maximal (IC90) effective remdesivir concentrations 

for inhibiting SARS-CoV-2.30,31

RESULTS

PK Model

The model simultaneously described the time course of remdesivir and Nuc concentrations in 

plasma and TNuc in the lung (Figure 1). The model described the PK data for two different 

remdesivir doses well based on model fits shown in Figure 2 and parameters estimates reported in 

Table 1 (%CV <50%). 

Remdesivir and Nuc in plasma were modeled as a one- and two-compartment model, 

respectively (AIC=119). Alternatively, two compartments were used for both remdesivir and Nuc in 

plasma (AIC=123) but this model had parameter identifiability issues related to the remdesivir tissue 

compartment. Finally, remdesivir and Nuc PK described using a two-compartment one-compartment 

model, respectively, resulted in poor parameter precision compared to the final model (AIC=124). A
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Models that described bi-directional formation of both Nuc and TNuc and models with additional, 

non-metabolic, routes of elimination for remdesivir and Nuc were assessed. However, parameters 

describing these models were unidentifiable. Final volume and clearance parameters were conditioned 

on bioavailability, as remdesivir was administered subcutaneously.

Scaling and Human PK Parameters

Allometric scaling was performed to predict human PK parameters for remdesivir and Nuc in 

plasma and TNuc in lung.4 Murine PK parameters were scaled to a 70 kg human using published 

mouse body weight of 0.025 kg and established scaling constants of 1, 0.75, and -0.25 for volume, 

clearance, and rate constants, respectively.27,32 The predicted human PK parameters are reported in 

Table 2 Predicted human volume and clearance parameters were assumed to be conditioned on . 

bioavailability as these parameters were scaled based on murine volume and clearance PK parameters 

following subcutaneous administration. 

Simulations

Model-predicted human PK parameters were used to simulate currently approved remdesivir 

treatment regimen for four days administered to a 70 kg adult. Unbound concentrations were 

calculated using a free fraction of 12.1%29 for remdesivir, 100% for Nuc (range 85% to 127%),29 and 

intracellular TNuc. PK parameters (Cmax, AUCτ and half-life) estimated based on the EMA data 

(observed) and the same PK parameters calculated from simulations performed using allometrically 

scaled human PK parameters (simulated) (Figure 3) are reported in Table 3. Simulated unbound 

remdesivir plasma concentrations are shown in Figure 3A. Unbound remdesivir Cmax based on 

simulations was approximately 4-fold lower than the observed Cmax on days 1 and 5; while the 

predicted plasma AUCτ and half-life were within two- and three-fold of the observed values, 

respectively. Simulations of unbound remdesivir plasma concentrations using current approved 

dosing regimens were below the in vitro IC50 and IC90 for inhibition of SARS-CoV-2 of 0.28 (black 

dashed line in Figure 3A) and 2.48 μM26 (black dotted line), respectively. PK parameters (Cmax, A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

AUCτ and half-life) calculated based on simulated unbound Nuc plasma PK profiles on days 1 and 5 

were within 1.5-fold of the observed PK parameters based on EMA data. Unbound Nuc PK profiles 

were within the 95% confidence interval of the predicted human PK (blue shaded region) simulated 

using PK parameters obtained by modeling digitized human PK data (see Supplemental Results). 

Simulations of unbound Nuc using allometrically scaled PK parameters were below in vitro IC50 and 

IC90 for inhibition of SARS-CoV-2 of 0.62 (black dashed line in Figure 3B) and 1.34 μM26 (black 

dotted line), respectively. Simulated Cmax of TNuc in lung (Figure 3C) for days 1 and 5 was 0.027 

μM. The simulated drug exposures (AUCτ) of TNuc for days 1 and 5 were 0.469 and 0.587 μM·h, 

respectively. The slow formation rate of TNuc based on model predictions identified a formation-rate 

limited elimination of TNuc.33 The simulated half-life of TNuc in lung was 23.1 hours, within 1.1-

fold of the NTP-predicted half-life of 22 hours based on in vitro cell culture studies in normal human 

bronchiolar epithelial cells (Lonza, #CC-2540, Donor 29132).13

DISCUSSION

SARS-CoV-2 infects the upper and lower airways to cause diffuse alveolar damage.3,34 

Serious pulmonary manifestations of COVID-19 make the lungs an ideal drug target to prevent the 

onset of local inflammation leading to pneumonia and tissue damage. Remdesivir is a broad-spectrum 

antiviral agent with demonstrated in vitro activity against SARS-CoV-213 which shortens length of 

hospital stay in patients with COVID-19.10,19–21 As of October 26, 2020, clinicaltrials.gov reported 

two active trials for intravenous remdesivir in patients with moderate to severe COVID-19: ACTT-2 

(N=1034) and WHO-SOLIDARITY-GERMANY (N=400). 

In this study, a mechanism-based PK model describing remdesivir and Nuc in plasma and the 

active metabolite (NTP) in lung was developed using mouse data. Although Nuc (aqueous solubility 

13.1 mg/mL, logP -1.9 – -0.58, pKa 12.13) is less lipophilic than remdesivir, a higher percentage of 

unbound Nuc circulates given its lower protein binding; hence, a larger fraction of free metabolite is 

available to penetrate tissue,35,36 explaining the use of a tissue compartment to describe Nuc PK. 

Leveraging the developed preclinical mechanism-based PK model, allometric scaling was performed 

to predict human PK parameters. These PK parameters were used to simulate remdesivir PK in A
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humans to better understand target concentration attainment with the current approved regimen. The 

simulated PK parameters (Cmax, AUCτ and half-life) calculated based on allometrically scaled 

human PK parameters were reasonably predictive of the eleven observed human PK parameters 

(Cmax, AUCτ and half-life) 29 shown in Table 3 and NTP in vitro-predicted half-life,13 with 67% 

(8/12) and 83% (10/12) of the simulated parameters within two- and three-fold of observed 

parameters, respectively.25 Simulated human PK parameters are in agreement with the currently 

available observed PK parameters for remdesivir and Nuc in humans and experimentally determined 

half-life of NTP in human lung cells. Furthermore, simulated Nuc plasma PK profiles based on the 

currently approved dosing regimen were within the 95% confidence interval of the Nuc PK profiles 

simulated using model estimated parameters estimated by modeling digitized human data. The 

mechanism based model was able to accurately simulate remdesivir and Nuc human PK profiles in 

plasma.29 Hence, incorporating in vivo murine experimental data of NTP concentrations at the target 

site (lung) into this model13 enabled us to simulate predicted NTP concentrations in the human lung. 

The average NTP exposure (AUCinf) in human peripheral blood mononuclear cells (PBMCs) 

following a single, 150 mg, 2-hour intravenous infusion of remdesivir was 0.555 µM·h (CV% 28.3) in 

healthy human volunteers (N = 10).29 Although the observed value is not specific to human lung and 

the loading dose simulated is 33.3% higher (i.e., 200 mg infused over 30 mins compared to 150 mg 

infused over 2 hours), the exposure observed is comparable to the simulated exposures in human lung 

predicted using the mechanism-based PK model estimates for day 1 and day 5. This model can be 

used to simulate NTP concentrations in human lung, the site of action, to optimize and assess novel 

remdesivir treatment regimens that can achieve exposures adequate for SARS-CoV-2 inhibition.

Current clinical dosing may be able to achieve unbound concentrations at or above the 

remdesivir IC50 of 0.28 μM for SARS-CoV-2, however the simulations demonstrate that the Cmax 

attained with this dosing29 is below the remdesivir IC90 threshold of 2.48 μM and both IC50 and IC90 

thresholds for Nuc of 0.62 μM and 1.34 μM, respectively. Since the IC90 threshold is suggested to be 

a more stringent threshold of viral inhibition,37,38 maintaining free drug concentrations above the IC90 

are likely to lead to more effective COVID-19 treatment. Thus, current intravenous dosing may not be 

optimal for achieving the IC90 required to inhibit SARS-CoV-2 in the lung to effectively treat 

COVID-19 compared to a targeted, inhaled formulation. Concentration thresholds evaluated using A
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Vero E6 cells were also considered (remdesivir: IC50:1.65 μM, IC90:2.40 μM and Nuc: IC50:0.47 μM, 

IC90:0.71 μM)26 as a less conservative measure of efficacy compared to the previous thresholds 

reported here using Calu 3B4 cells. Another in vitro study demonstrated that 10 µM of remdesivir 

resulted in a 9-log and 10.2-log reduction in SARS-CoV-2 viral nucleocapsid gene expression in 

alveolar epithelium when tested in organoid and air-liquid interface cultures, respectively.39 A target 

concentration of 10 µM is 10-fold higher than the observed free drug concentrations in humans, and it 

is uncertain if this concentration can be achieved in the lung via the intravenous route or if similar 

levels of viral inhibition would be possible at lower concentrations. Furthermore, these target 

concentrations necessary for the inhibition of viral replication are reflective of remdesivir 

concentrations measured in vitro, not the active NTP metabolite needed in vivo. 

Mice infected with 104 or 103 pfu (plaque forming units)/50 µL of SARS-CoV were given 25 

mg/kg subcutaneous remdesivir twice daily as prophylaxis (N=10) or as standard therapy (N=11), 

respectively. Lung viral load on day 4 in untreated mice (1.7–3.1x106 pfu/lobe) were similar to viral 

production examined in human bronchial epithelial cells on day 4 in culture (3x106 pfu/culture).40 

Treated mice showed significant reductions in day 4 lung viral load and significant improvements in 

lung function (reduced PenH score) compared to placebo.29 Further examination of this dose is 

warranted to determine if the drug-virus interaction is conserved in SARS-CoV-2 infection to assess 

the contribution of the host immune response to treatment success and to assess therapeutic impact on 

clinical lung function. The average observed AUCτ of total phosphorylated nucleosides in the mouse 

lung given this regimen is 10.76 µM·h (CV% = 61),13 far above the simulated and observed exposure 

for NTP in human lung and plasma under the approved dosing regimen. It is uncertain if this exposure 

is achievable via intravenous administration or to what extent exposures below this threshold result in 

significant clinical improvements in lung function. Higher NTP concentrations in the lung are needed 

to inhibit viral replication and improve the clinical benefit.16 Given remdesivir’s poor solubility, 

reformulating remdesivir to an inhaled formulation may help to achieve higher target NTP 

concentrations in the lung. Given the speed of onset of the disease and the role of lung infection in 

initiating the rapid clinical decline, direct pulmonary delivery of remdesivir as an aerosol formulation 

is a rational approach to impeding the progress of the disease and the consequent lung damage. 
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Currently, remdesivir as an inhaled nanoparticle formulation is being evaluated for outpatient 

treatment of COVID-19 (NCT04480333).

The conclusions of this work should be placed in the context of the underlying assumptions. 

This model assumed that the total measured concentration of phosphorylated nucleoside metabolites, 

TNuc, in the lung (NMP, NDP, and NTP) were equivalent to NTP in lung. This assumption is 

reasonable based on the observation that, on average, NTP constitutes ~80% of the total nucleoside 

concentration in lung.13 Also, our model assumed complete conversion of remdesivir to Nuc and Nuc 

to NTP. Although approximately 10% of remdesivir is eliminated unchanged in urine,14 there are 

currently no data to effectively differentiate renal and metabolic elimination of remdesivir, and the 

current model was not able to differentiate routes of elimination. Additional studies to measure the 

amounts of remdesivir and its metabolites recovered in urine would make the next generation of this 

model more robust

The effective use of allometric scaling of preclinical PK of an anti-viral therapy to describe 

human PK has been described.41 Allometric scaling is an empirical approach that does not take into 

account differences between species with regard to protein binding, hepatic metabolism, or drug-

receptor interactions.24 However, these species differences were negligible or accounted for in our 

approach. The free fraction of remdesivir has a narrow range across species (8.0% to 14.2%).29 

Remdesivir is primarily metabolized by hydrolase activity and not by hepatic enzymes. Additionally, 

because carboxylesterase is not found in human plasma,42 carboxylesterase knockout mice were used 

in this study to increase the similarity of remdesivir metabolism between mice and humans. Lastly, 

receptor interactions of remdesivir are not species-dependent, indicating allometric scaling is an 

appropriate tool to predict remdesivir human PK parameters.

The simulated remdesivir Cmax in humans was 0.25-fold of the average observed Cmax. This 

parameter is described by the volume of distribution, with the higher predicted volume of distribution 

value attributable to the inability of the preclinical data to describe the distribution phase of 

remdesivir because this phase is masked by the absorption phase during subcutaneous administration. 

Thus, the available subcutaneous preclinical data do not fully describe the volume of distribution of 

remdesivir based on intravenous administration leading to a loss of predictive precision of remdesivir A
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Cmax in humans. Additionally, because mice were administered remdesivir subcutaneously, PK 

parameters scaled to humans assume 100% bioavailability. While high subcutaneous bioavailability is 

not uncommon for small molecule antivirals,43,44 PK studies with intravenous administration of 

remdesivir in mice would help determine the true subcutaneous bioavailability resulting in better 

characterization of remdesivir PK in humans. Despite this limitation, accurate conversion from 

remdesivir to Nuc and from Nuc to NTP was conserved in the scaling process across species, 

demonstrating the ability of the model to effectively simulate Nuc concentrations in plasma and NTP 

concentrations in lung for the assessment of target attainment in a clinical setting. 

Additional published PK data have shown biphasic dispositions for remdesivir in rhesus 

macaques8 and marmosets,13 which may have better described the distribution phase of remdesivir 

PK. As previously stated, the distribution phase was not apparent in the mouse PK data, likely 

because it was masked by the absorption phase from the subcutaneous injection. However, because 

the rhesus macaque and marmoset data did not include lung NTP concentrations, the data were 

insufficient to scale and describe NTP concentrations in human lung. Although total NTP 

concentration in the lung was well described, NTP concentrations in differentiated cells or regions 

within the lung have not been described. Preclinical experiments that differentiate NTP concentrations 

in lower or upper respiratory tracts could help describe target NTP concentrations at specific sites of 

infection within the lung. Lastly, efficacy targets available in the literature13,30 do not describe 

concentrations of NTP, the active metabolite, necessary to inhibit viral replication. Although a model 

was created to simulate and effectively describe NTP in human lungs, additional in vitro experiments 

need to be performed to determine the efficacy target for extra- and intracellular NTP to better 

characterize the target concentration of NTP for effective remdesivir dosing31. Moreover, the model 

can assist in the design of preclinical efficacy studies to assess remdesivir and NTP concentrations 

necessary for SARS-CoV-2 inhibition in vivo.

Through this analysis, we have identified a need for alternative dosing strategies to achieve the 

desired concentrations of NTP in human lung. Reformulating the poorly soluble remdesivir for direct 

pulmonary delivery may achieve the desired concentration at the site of infection while also being an 

appropriate route of administration to mitigate pulmonary progression in critically-ill COVID-19 

patients.A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

STUDY HIGHLIGHTS

What is the current knowledge on the topic?

Remdesivir therapy has shown clinical benefit in patients with COVID-19 caused by SARS-CoV-2. 

Remdesivir is converted intracellularly to its active nucleoside triphosphate metabolite, which 

terminates RNA transcription in intracellular SARS-CoV-2. Target concentrations necessary for 

remdesivir to inhibit SARS-CoV-2 have been determined in vitro. 

What question did the study address?

What are the pharmacokinetic profiles of remdesivir and its metabolites under current clinical 

treatment regimens and are these treatment regimens able to achieve effective concentrations at target 

sites of infection to optimally treat COVID-19 caused by SARS-CoV-2? 

What does this study add to our knowledge?

This study leverages existing preclinical in vivo data of remdesivir and its metabolites to examine the 

pharmacokinetics of the current clinical treatment regimens for remdesivir and the ability of these 

regimens to achieve concentrations at target sites of infection necessary for effective treatment of 

COVID-19 caused by SARS-CoV-2.

How might this change clinical pharmacology or translational science?

A novel mechanism-based model of remdesivir and its metabolites describing the active metabolite at 

the site of action was developed. This study provides an explanation for the need for alternative 

dosing strategies and the need for optimization of remdesivir treatment for it to be effective to treat 

COVID-19 caused by SARS-CoV-2.
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FIGURE LEGENDS

Figure 1. Schematic of the Pharmacokinetic Mouse Model for Remdesivir and Metabolites. 

Subcutaneous dosing of remdesivir is described by a one compartment model with first-order 

absorption, ka. Remdesivir is irreversibly metabolized to GS-441524 metabolite (Nuc) via a first-order 

rate constant, kmet. This metabolite is characterized by a two-compartment model with linear 

distribution, QNuc, between plasma, VNuc,Plasma, and tissue, VNuc,Tissue. Nuc is distributed to lung and 

phosphorylated to mono-, di-, and triphosphate nucleoside, TNuc, via a first-order rate constant kLung. 

TNuc is characterized by a one compartment model, only residing in lung, VTNuc,Lung. TNuc is 

eliminated via a linear, intracellular process, CLTNuc,Lung.

Figure 2. Pharmacokinetic Model Fits. Semi-log plot of the concentration of remdesivir and its 

metabolites versus time in mice following administration of 25 mg/kg (red) or 50 mg/kg (blue) 

subcutaneous injection of remdesivir. Model fits (lines) of observed data (points) are shown for (A) 

total plasma concentration of remdesivir after a single dose, (B) total plasma concentration of 

nucleoside after a single dose, and (C) total phosphorylated nucleoside (TNuc) concentration in lung 

after twice-daily dosing of 25 mg/kg (red) and a single dose of 50 mg/kg (blue).

Figure 3. Simulated Human PK. The clinical dosing regimen of a 200 mg loading dose followed by 

100 mg daily maintenance dose administered as 30-minute intravenous infusion was simulated. 

Simulated PK profiles for (A) remdesivir (red) where the black dashed line indicate the remdesivir 

IC50 (0.28 uM) and the black dotted line indicates remdesivir IC90 (2.48 uM) for inhibiting SARS-

CoV-2; (B) Nuc (blue) where the black dashed line indicate the Nuc IC50 (0.62 uM) and the black 

dotted line indicates Nuc IC90 (1.34 uM) for inhibiting SARS-CoV-2; and (C) TNuc (green) 

metabolites over a 5-day period is shown. Free concentrations for parent and metabolites in uM are 

shown on a semi-log scale. The mean observed peak concentration measured in healthy volunteers 

(Cmax) is shown as black points. Error bars represent 95% confidence interval of observed data. The 

blue shaded region represents the 95% confidence interval of the predicted Nuc plasma PK based on 

digitized human PK data described in the Supplementary Methods.A
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Supplemental Files

1. Supplemental Data and Model Code

2. Table S1

3. Figure S1

4. Figure S2
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Table 1. Final Parameter Estimates for Remdesivir and its Metabolites in Mice 

Parameter (unit) Definition Estimate %CV 

Remdesivir 

k
a 
(h

-1

) First-order absorption rate 3.31 29 

V
Rem

 (L/kg) Volume of distribution, plasma 2.05 23 

k
met 

(h
-1

)
a

 First-order metabolic rate constant 1.95 26 

Error
Rem,Plasma

 (μM) Additive error 0.412 18 

Nuc 

V
Nuc,Plasma 

(L/kg) Volume of distribution, plasma 5.35 10 

V
Nuc,Tissue 

(L/kg) Volume of distribution, tissue 11.7 49 

Q
Nuc 

(L/hr/kg) Intercompartmental clearance 1.15 20 

k
Lung 

(h
-1

)
b

 First-order metabolic rate constant 0.217 21 

Error
Nuc,Plasma 

(%) Proportional error  27.8 16 

TNuc 

V
NTP,Lung 

(L/kg) Volume of distribution 1.69 33 

CL
NTP,Lung 

(L/hr/kg) Clearance from lung 2.26 17 

Error
NTP,Lung 

(%) Proportional error 48.9 16 

a
 kmet affects remdesivir and Nuc 

b 
kLung affects Nuc and TNuc A
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Table 2. Predicted Human PK Parameter Estimates Based on Allometric Scaling 

Parameter (unit) Definition Estimate 

Remdesivir 

V
Rem

 (L/kg) Volume of distribution, plasma 2.05 

k
met 

(h
-1

)
a

 First-order metabolic rate constant 0.268 

Nuc 

V
Nuc,Plasma 

(L/kg) Volume of distribution, plasma 5.35 

V
Nuc,Tissue 

(L/kg) Volume of distribution, tissue 11.7 

Q
Nuc 

(L/hr/kg) Intercompartmental clearance 0.158 

k
Lung 

(h
-1

)
b

 First-order metabolic rate constant 0.030 

TNuc 

V
NTP,Lung 

(L/kg) Volume of distribution, lung 1.69 

CL
NTP,Lung 

(L/hr/kg) Clearance from lung 0.360 

a
 kmet affects remdesivir and Nuc 

b 
kLung affects Nuc and TNuc 
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Table 3. Observed remdesivir and Nuc PK parameters in plasma (peak concentration, Cmax, 

drug exposure, AUC, and half-life, t1/2) were calculated using European Medicines Agency 

(EMA) compassionate use of remdesivir PK data. Simulated remdesivir and Nuc PK parameters 

in plasma were calculated based on PK profiles simulated using allometrically scaled human PK 

parameters. Currently approved treatment simulated was 30-minute IV infusion of 200 mg of 

remdesivir on Day 1 followed by 100 mg daily for 4 days in healthy subjects. The difference 

between the observed and simulated parameters (Fold Change) is reported here. 

PK Parameter
 

Observed
a

 Simulated
 

Fold Change
b

 

Remdesivir Day 1 (N=8) 

 

   

     C
max 

(ng/mL) 5440 (20.3) 1300 0.24 

     AUC
c

 (h∙ng/mL) 
2920 (20.6) 3064 1.1 

     t
1/2 

(h) 0.98 (0.82, 1.03) 2.6 2.6 

Remdesivir Day 5 (N=7) 

 

   

     C
max 

(ng/mL) 2610 (12.7) 653 0.25 

     AUC
c

 (h∙ng/mL) 
1560 (13.9) 2600 1.7 

     t
1/2 

(h) 0.89 (0.82, 1.09) 2.6 2.9 

Nuc Day 1 (N=8) 

 

   

     C
max 

(ng/mL) 152 (25.9) 169 1.1 

     AUC
c

 (h∙ng/mL) 
2240 (29.1) 3060 1.4 

     t
1/2 

(h) NA 23.1 NA A
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Nuc Day 5 (N=7) 

 

   

     C
max 

(ng/mL) 142 (30.3) 162 1.1 

     AUC
c

 (h∙ng/mL) 
2230 (30.0) 3230 1.4 

     t
1/2 

(h) 25.3 (24.10, 30.32) 23.1 0.9 

a
 Observed PK parameters are presented as mean (%CV) while the half-life (t1/2) as median (Q1, 

Q3) 

b
 Fold-change was calculated as the ratio of the simulated parameter to the observed parameter 

c
 Area under the curve for day 1 (AUC0-24) and for day 5 (AUCτ)  
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