597 research outputs found
Winter activity of a population of greater horseshoe bats (Rhinolophus ferrumequinum)
Activity patterns of a greater horseshoe bats Rhinolophus ferrumequinum were investigated at caves in Cheddar (south-west England) during the hibernation season. An ultrasound detector and datalogger were used to monitor and record the number of echolocation calls in a single cave. Activity of R. ferrumequinum remained largely nocturnal throughout winter, and the mean time of activity over 24 hours was 88 to 369 minutes (1.47 to 6.15 hours) after sunset. There was an increase in diurnal activity from late May to early June, probably because bats remained active after foraging at dawn towards the end of the hibernation season. Visits to the cave did not increase bat activity. Cave air temperature reflected external climatic temperature, although there was variation in cave temperature and its range within and across caves. Individual R. ferrumequinum are usually dispersed in caves in regions where temperature fluctuations correlate with climatic variations in temperature. There was a positive correlation between the number of daily bat passes monitored by the bat detector and datalogger (= daily activity) and cave temperature. Nocturnal activity may sometimes be associated with winter feeding. Neither date nor barometric pressure had a significant effect on daily activity. Activity patterns largely reflected the findings from individual R. ferrumequinum studied by telemetry (Park, 1998), in that bat activity increased with cave and climatic temperatures, and the temporal pattern of activity remained consistently nocturnal throughout winter, starting at dusk
Polarization transfer in the HeH reaction
Polarization transfer in the 4He(e,e'p)3H reaction at a Q^2 of 0.4 (GeV/c)^2
was measured at the Mainz Microtron MAMI. The ratio of the transverse to the
longitudinal polarization components of the ejected protons was compared with
the same ratio for elastic ep scattering. The results are consistent with a
recent fully relativistic calculation which includes a predicted medium
modification of the proton form factor based on a quark-meson coupling model.Comment: 5 pages, Latex, 2 postscript figures, submitted to Physics Letters
Probing the high momentum component of the deuteron at high Q^2
The d(e,e'p) cross section at a momentum transfer of 3.5 (GeV/c)^2 was
measured over a kinematical range that made it possible to study this reaction
for a set of fixed missing momenta as a function of the neutron recoil angle
theta_nq and to extract missing momentum distributions for fixed values of
theta_nq up to 0.55 GeV/c. In the region of 35 (deg) <= theta_nq <= 45 (deg)
recent calculations, which predict that final state interactions are small,
agree reasonably well with the experimental data. Therefore these experimental
reduced cross sections provide direct access to the high momentum component of
the deuteron momentum distribution in exclusive deuteron
electro-disintegration.Comment: 5 pages, 2 figure
Organization theory and military metaphor: time for a reappraisal?
A ‘conventional’ use of military metaphor would use it to convey attributes such as hierarchical organization, vertical communication and limited autonomy. This is often used in contrast to a looser form of organization based on the metaphor of the network. However, this article argues that military practice is more complex, with examples of considerable autonomy within the constraints of central direction. It is suggested that not only might this be a more useful metaphor for many contemporary organizations, but also that simplistic uses of military metaphor divert our attention away from the functions that management hierarchies play. The discussion is embedded within a critical realist account of metaphor, arguing for both its value and the need for its further development
Phenomenology of the Deuteron Electromagnetic Form Factors
A rigorous extraction of the deuteron charge form factors from tensor
polarization data in elastic electron-deuteron scattering, at given values of
the 4-momentum transfer, is presented. Then the world data for elastic
electron-deuteron scattering is used to parameterize, in three different ways,
the three electromagnetic form factors of the deuteron in the 4-momentum
transfer range 0-7 fm^-1. This procedure is made possible with the advent of
recent polarization measurements. The parameterizations allow a
phenomenological characterization of the deuteron electromagnetic structure.
They can be used to remove ambiguities in the form factors extraction from
future polarization data.Comment: 18 pages (LaTeX), 2 figures Feb. 25: minor changes of content and in
Table
Deeply Virtual Compton Scattering off the neutron
The present experiment exploits the interference between the Deeply Virtual
Compton Scattering (DVCS) and the Bethe-Heitler processes to extract the
imaginary part of DVCS amplitudes on the neutron and on the deuteron from the
helicity-dependent D cross section measured at =1.9
GeV and =0.36. We extract a linear combination of generalized parton
distributions (GPDs) particularly sensitive to , the least constrained
GPD. A model dependent constraint on the contribution of the up and down quarks
to the nucleon spin is deduced.Comment: Published in Phys. Rev. Let
The MINERA Data Acquisition System and Infrastructure
MINERA (Main INjector ExpeRiment -A) is a new few-GeV neutrino
cross section experiment that began taking data in the FNAL NuMI (Fermi
National Accelerator Laboratory Neutrinos at the Main Injector) beam-line in
March of 2010. MINERA employs a fine-grained scintillator detector capable
of complete kinematic characterization of neutrino interactions. This paper
describes the MINERA data acquisition system (DAQ) including the read-out
electronics, software, and computing architecture.Comment: 34 pages, 16 figure
The E00-110 experiment in Jefferson Lab's Hall A: Deeply Virtual Compton Scattering off the Proton at 6 GeV
We present final results on the photon electroproduction
() cross section in the deeply virtual Compton
scattering (DVCS) regime and the valence quark region from Jefferson Lab
experiment E00-110. Results from an analysis of a subset of these data were
published before, but the analysis has been improved which is described here at
length, together with details on the experimental setup. Furthermore,
additional data have been analyzed resulting in photon electroproduction cross
sections at new kinematic settings, for a total of 588 experimental bins.
Results of the - and -dependences of both the helicity-dependent and
helicity-independent cross sections are discussed. The -dependence
illustrates the dominance of the twist-2 handbag amplitude in the kinematics of
the experiment, as previously noted. Thanks to the excellent accuracy of this
high luminosity experiment, it becomes clear that the unpolarized cross section
shows a significant deviation from the Bethe-Heitler process in our kinematics,
compatible with a large contribution from the leading twist-2 DVCS term to
the photon electroproduction cross section. The necessity to include
higher-twist corrections in order to fully reproduce the shape of the data is
also discussed. The DVCS cross sections in this paper represent the final set
of experimental results from E00-110, superseding the previous publication.Comment: 48 pages, 32 figure
- …