70 research outputs found

    Evaluating and improving corn nitrogen fertilizer recommendation tools across the U.S. Midwest

    Get PDF
    Dr. Newell Kitchen, Dissertation Supervisor.Includes vita."May 2018."Determining which corn (Zea mays L.) nitrogen (N) recommendation tools best predict the economically optimal N rate (EONR) would be valuable for maximizing profits and minimizing environmental consequences. The objectives of this research were to evaluate the performance of publicly-available N fertilizer recommendation tools across a wide range of soil and weather environments for 1) prescribing EONR for planting and split N fertilizer applications, 2) improve understanding of the economic and environmental impact of these tools, 3) improve N recommendation tools by integrating soil and weather information, and 4) improve N recommendation tools by combing multiple tools. The evaluation was conducted on 49 N response trials that spanned eight states and three growing seasons. Soil and plant samples, weather, and management information were collected using standardized procedures to allow for a side-by-side comparison of tools. Tool N recommendations were for fertilizer applications either atplanting or an inseason applied at V9 corn development stage. Only 11of 31 tool recommendations were weakly related to EONR (P [less than or equal to] 0.10 and r[2] [less than or equal to] 0.24). These tools related to EONR resulted in only 21-47% of sites within [plus or minus]30 kg N ha-1 of EONR. When considering partial profit for these 11 tools the average profitability relative to EONR range from -56to−155ha−1.Anenvironmentalassessmentofthese11toolsfoundtherewasnodifferencefoundbetweentools,withenvironmentalcostsrangingfrom−56 to -155 ha-1. An environmental assessment of these 11 tools found there was no difference found between tools, with environmental costs ranging from -49 to 55 ha-1 relative to EONR. Using an elastic net regression model to incorporate soil and weather information helped to improve six N recommendation tools. This improvement resulted in a stronger linear relationship with EONR (r[2] [less than or equal to] 0.20 but [less than or equal to] 0.39; P < 0.01) and resulted in [greater than or equal to] 35% but [less than or equal to] 55 % of the sites within [plus or minus] 30 kg N ha-1 of EONR. Using other ways to improve tools included combing two or three unique tools. The best results for an at-planting N fertilizer recommendation occurred when three at-planting N recommendation tools were combined with all interactions included in the elastic net regression model. This combined recommendation tool had an improved significant linear relationship with EONR (r[2] = 0.46; P <0.001) compared with the best tool evaluated alone (an increase in r2 of 0.27). The best combination of N recommendation tools for a split N fertilizer application occurred when using three tools with a decision tree (r[2] = 0.45; P <0.001) over the best tool evaluated alone (an increase in r[2] of 0.18). However, while improvements to these publicly-available tools were noteworthy, over half of the variation in EONR was still unexplained. This was not surprising since many other factors that impact soil-crop N dynamics are unconsidered, including factors that occur after a sidedress N application.Includes bibliographical references (pages 188-191)

    Maize in Nepal: Production Systems, Constraints, and Priorities for Research

    Get PDF
    Crop Production/Industries, Research and Development/Tech Change/Emerging Technologies,

    Toward an Empirical Theory of Pulsar Emission XII: Exploring the Physical Conditions in Millisecond Pulsar Emission Regions

    Full text link
    The five-component profile of the 2.7-ms pulsar J0337+1715 appears to exhibit the best example to date of a core/double-cone emission-beam structure in a millisecond pulsar (MSP). Moreover, three other MSPs, the Binary Pulsar B1913+16, B1953+29 and J1022+1001, seem to exhibit core/single-cone profiles. These configurations are remarkable and important because it has not been clear whether MSPs and slow pulsars exhibit similar emission-beam configurations, given that they have considerably smaller magnetospheric sizes and magnetic field strengths. MSPs thus provide an extreme context for studying pulsar radio emission. Particle currents along the magnetic polar flux tube connect processes just above the polar cap through the radio-emission region to the light-cylinder and the external environment. In slow pulsars radio-emission heights are typically about 500 km around where the magnetic field is nearly dipolar, and estimates of the physical conditions there point to radiation below the plasma frequency and emission from charged solitons by the curvature process. We are able to estimate emission heights for the four MSPs and carry out a similar estimation of physical conditions in their much lower emission regions. We find strong evidence that MSPs also radiate by curvature emission from charged solitons.Comment: 14 pages, published in Ap

    Subsurface drainage effects on soil penetration resistance and water table depth on a clay soil in the Red River of the North Valley, USA

    Get PDF
      Since 1993, the Red River of the North Valley in North Dakota (ND) and Minnesota (MN), in the USA has experienced increased annual rainfall which has caused localized seasonal soil waterlogging and inhibited crop yield potential in the unique, high water table clay soils of the region.  Subsurface (tile) drainage has been increasingly considered by farmers to help reduce excess water in the crop root zone.  Producers desire to manage the water table for optimizing yield and trafficability of the field.  The objective of this research was to evaluate differences in soil penetration resistance and water table depth between subsurface (drained) and non-subsurface drained treatments (undrained), using water control structures, in fallow, and cropped soybean (Glycine max L. Merr.) and wheat (Triticum aestivum L. emend. Thell.) cultivars on a Fargo-Ryan silty clay soil near Fargo, ND, USA in 2009 and 2010.  The experimental design was a randomized complete block in a split-plot arrangement with four replicates.  The whole plot treatments were drained and undrained (control structures opened and closed, respectively).  Soil penetrometer readings and water table depth were measured weekly.  Yields of each crop were not different comparing drained and undrained treatments in 2009 and 2010.  The depth averaged drained penetration resistance was 1,211 kPa compared with 1,097 kPa for undrained treatment, averaged across 2009 and 2010.  The depth-averaged drained penetration resistance values for fallow, soybean, and wheat were 1,077, 1,137, and 1,420 kPa, respectively.  The undrained values for fallow, soybean and wheat were 1,001, 1,021, and 1,267 kPa, respectively, all significantly lower than the drained treatments, indicating that the drained soil is capable of a higher load carrying capacity compared to the undrained soil.  The average depth to the water table was greater on drained soil compared to the undrained soil both early and late in the growing season.  Forty two percent of the variation in the penetration resistance can be explained by the level of the water table below the surface.  Water control structures can be used to manage the water table level and soil penetrations resistance.  The ability for land managers to enter drained fields with farm equipment earlier will likely extend the length of the growing season and potentially increase crop yields in this region.   Keywords: subsurface water management, penetration resistance, controlled drainage, water table depth, trafficability, US

    A Systematic Review of Durum Wheat: Enhancing Production Systems by Exploring Genotype, Environment, and Management (G × E × M) Synergies

    Get PDF
    According to the UN-FAO, agricultural production must increase by 50% by 2050 to meet global demand for food. This goal can be accomplished, in part, by the development of improved cultivars coupled with modern best management practices. Overall, wheat production on farms will have to increase significantly to meet future demand, and in the face of a changing climate that poses risk to even current rates of production. Durum wheat [Triticum turgidum L. ssp. durum (Desf.)] is used largely for pasta, couscous and bulgur production. Durum producers face a range of factors spanning abiotic (frost damage, drought, and sprouting) and biotic (weed, disease, and insect pests) stresses that impact yields and quality specifications desired by export market end-users. Serious biotic threats include Fusarium head blight (FHB) and weed pest pressures, which have increased as a result of herbicide resistance. While genetic progress for yield and quality is on pace with common wheat (Triticum aestivum L.), development of resistant durum cultivars to FHB is still lagging. Thus, successful biotic and abiotic threat mitigation are ideal case studies in Genotype (G) × Environment (E) × Management (M) interactions where superior cultivars (G) are grown in at-risk regions (E) and require unique approaches to management (M) for sustainable durum production. Transformational approaches to research are needed in order for agronomists, breeders and durum producers to overcome production constraints. Designing robust agronomic systems for durum demands scientific creativity and foresight based on a deep understanding of constitutive components and their innumerable interactions with each other and the environment. This encompasses development of durum production systems that suit specific agro- ecozones and close the yield gap between genetic potential and on-farm achieved yield. Advances in individual technologies (e.g., genetic improvements, new pesticides, seeding technologies) are of little benefit until they are melded into resilient G × E × M systems that will flourish in the field under unpredictable conditions of prairie farmlands. We explore how recent genetic progress and selected management innovations can lead to a resilient and transformative durum production system

    Mechanism-of-Action Determination of GMP Synthase Inhibitors and Target Validation in Candida albicans and Aspergillus fumigatus

    Get PDF
    SummaryMechanism-of-action (MOA) studies of bioactive compounds are fundamental to drug discovery. However, in vitro studies alone may not recapitulate a compound's MOA in whole cells. Here, we apply a chemogenomics approach in Candida albicans to evaluate compounds affecting purine metabolism. They include the IMP dehydrogenase inhibitors mycophenolic acid and mizoribine and the previously reported GMP synthase inhibitors acivicin and 6-diazo-5-oxo-L-norleucine (DON). We report important aspects of their whole-cell activity, including their primary target, off-target activity, and drug metabolism. Further, we describe ECC1385, an inhibitor of GMP synthase, and provide biochemical and genetic evidence supporting its MOA to be distinct from acivicin or DON. Importantly, GMP synthase activity is conditionally essential in C. albicans and Aspergillus fumigatus and is required for virulence of both pathogens, thus constituting an unexpected antifungal target

    Gamma-ray and radio properties of six pulsars detected by the fermi large area telescope

    Get PDF
    We report the detection of pulsed γ-rays for PSRs J0631+1036, J0659+1414, J0742-2822, J1420-6048, J1509-5850, and J1718-3825 using the Large Area Telescope on board the Fermi Gamma-ray Space Telescope (formerly known as GLAST). Although these six pulsars are diverse in terms of their spin parameters, they share an important feature: their γ-ray light curves are (at least given the current count statistics) single peaked. For two pulsars, there are hints for a double-peaked structure in the light curves. The shapes of the observed light curves of this group of pulsars are discussed in the light of models for which the emission originates from high up in the magnetosphere. The observed phases of the γ-ray light curves are, in general, consistent with those predicted by high-altitude models, although we speculate that the γ-ray emission of PSR J0659+1414, possibly featuring the softest spectrum of all Fermi pulsars coupled with a very low efficiency, arises from relatively low down in the magnetosphere. High-quality radio polarization data are available showing that all but one have a high degree of linear polarization. This allows us to place some constraints on the viewing geometry and aids the comparison of the γ-ray light curves with high-energy beam models

    The Role of Binary Pulsars in Testing Gravity Theories

    Get PDF
    Radio pulsars are neutron stars (NSs) which emit collimated beams of radio waves, observed as pulses, once per rotation of the NS. A subgroup of the radio pulsars behave as highly stable clocks and monitoring the times of arrival of their radio pulses can provide an accurate determination of their positional, rotational, and orbital parameters, as well as indications on the properties of their space-time environment. In this chapter, we focus on the so-called relativistic binary pulsars, recycled NSs orbiting around a compact companion star. Some of them can be used as unique tools to test general relativity and other gravitational theories. The methodology for exploiting these sources as laboratories for gravity theories is first explained and then some of the most relevant recent results are reviewed. <P /
    • …
    corecore