1,572 research outputs found

    ARMD Workshop on Materials and Methods for Rapid Manufacturing for Commercial and Urban Aviation

    Get PDF
    This report documents the goals, organization and outcomes of the NASA Aeronautics Research Mission Directorates (ARMD) Materials and Methods for Rapid Manufacturing for Commercial and Urban Aviation Workshop. The workshop began with a series of plenary presentations by leaders in the field of structures and materials, followed by concurrent symposia focused on forecasting the future of various technologies related to rapid manufacturing of metallic materials and polymeric matrix composites, referred to herein as composites. Shortly after the workshop, questionnaires were sent to key workshop participants from the aerospace industry with requests to rank the importance of a series of potential investment areas identified during the workshop. Outcomes from the workshop and subsequent questionnaires are being used as guidance for NASA investments in this important technology area

    Out of the frying pan: a young pulsar with a long radio trail emerging from SNR G315.9-0.0

    Full text link
    The faint radio supernova remnant SNR G315.9-0.0 is notable for a long and thin trail that extends outward perpendicular from the edge of its approximately circular shell. In a search with the Parkes telescope we have found a young and energetic pulsar that is located at the tip of this collimated linear structure. PSR J1437-5959 has period P = 61 ms, characteristic age tau_c = 114 kyr, and spin-down luminosity dE/dt = 1.4e36 erg/s. It is very faint, with a flux density at 1.4 GHz of about 75 uJy. From its dispersion measure of 549 pc/cc, we infer d ~ 8 kpc. At this distance and for an age comparable to tau_c, the implied pulsar velocity in the plane of the sky is V_t = 300 km/s for a birth at the center of the SNR, although it is possible that the SNR/pulsar system is younger than tau_c and that V_t > 300 km/s. The highly collimated linear feature is evidently the pulsar wind trail left from the supersonic passage of PSR J1437-5959 through the interstellar medium surrounding SNR G315.9-0.0.Comment: accepted for publication in ApJ Letter

    Concurrent implementation of the Crank-Nicolson method for heat transfer analysis

    Get PDF
    To exploit the significant gains in computing speed provided by Multiple Instruction Multiple Data (MIMD) computers, concurrent methods for practical problems need to be investigated and test problems implemented on actual hardware. One such problem class is heat transfer analysis which is important in many aerospace applications. This paper compares the efficiency of two alternate implementations of heat transfer analysis on an experimental MIMD computer called the Finite Element Machine (FEM). The implicit Crank-Nicolson method is used to solve concurrently the heat transfer equations by both iterative and direct methods. Comparison of actual timing results achieved for the two methods and their significance relative to more complex problems are discussed

    Radio Timing and Optical Photometry of the Black Widow System PSR J1953+1846A in the Globular Cluster M71

    Get PDF
    We report on the determination of the astrometric, spin and orbital parameters for PSR J1953+1846A, a "black widow" binary millisecond pulsar in the globular cluster M71. By using the accurate position and orbital parameters obtained from radio timing, we identified the optical companion in ACS/Hubble Space Telescope images. It turns out to be a faint (m_F606W>=24, m_F814W>=23) and variable star located at only ~0.06" from the pulsar timing position. The light curve shows a maximum at the pulsar inferior conjunction and a minimum at the pulsar superior conjunction, thus confirming the association with the system. The shape of the optical modulation suggests that the companion star is heated, likely by the pulsar wind. The comparison with the X-ray light curve possibly suggests the presence of an intra-binary shock due to the interaction between the pulsar wind and the material released by the companion. This is the second identification (after COM-M5C) of an optical companion to a black widow pulsar in a globular cluster. Interestingly, the two companions show a similar light curve and share the same position in the color magnitude diagram.Comment: Accepted for publication by ApJ; 33 Pages, 10 Figures, 3 Table

    VLA Observations of Single Pulses from the Galactic Center Magnetar

    Full text link
    We present the results of a 7-12 GHz phased-array study of the Galactic center magnetar J1745-2900 with the Karl G. Jansky Very Large Array (VLA). Using data from two 6.5 hour observations from September 2014, we find that the average profile is comprised of several distinct components at these epochs and is stable over \simday timescales and \simGHz frequencies. Comparison with additional phased VLA data at 8.7 GHz shows significant profile changes on longer timescales. The average profile at 7-12 GHz is dominated by the jitter of relatively narrow pulses. The pulses in each of the four main profile components seen in September 2014 are uncorrelated in phase and amplitude, though there is a small but significant correlation in the occurrence of pulses in two of the profile components. Using the brightest pulses, we measure the dispersion and scattering parameters of J1745-2900. A joint fit of 38 pulses gives a 10 GHz pulse broadening time of τsc,10=0.09±0.03 ms\tau_{\rm sc, 10} = 0.09 \pm 0.03~\rm ms and a dispersion measure of DM=17601.3+2.4 pc cm3{\rm DM} = 1760^{+2.4}_{-1.3}~{\rm pc~cm}^{-3}. Both of these results are consistent with previous measurements, which suggests that the scattering and dispersion measure of J1745-2900 may be stable on timescales of several years.Comment: 20 pages, 10 figures, published in Ap

    VLBA measurement of the transverse velocity of the magnetar XTE J1810-197

    Get PDF
    We have obtained observations of the magnetar XTE J1810-197 with the Very Long Baseline Array at two epochs separated by 106 days, at wavelengths of 6 cm and 3.6 cm. Comparison of the positions yields a proper motion value of 13.5+-1.0 mas/yr at an equatorial position angle of 209.4+-2.4 deg (east of north). This value is consistent with a lower-significance proper motion value derived from infrared observations of the source over the past three years, also reported here. Given its distance of 3.5+-0.5 kpc, the implied transverse velocity corrected to the local standard of rest is 212+-35 km/s (1 sigma). The measured velocity is slightly below the average for normal young neutron stars, indicating that the mechanism(s) of magnetar birth need not lead to high neutron star velocities. We also use Australia Telescope Compact Array, Very Large Array, and these VLBA observations to set limits on any diffuse emission associated with the source on a variety of spatial scales, concluding that the radio emission from XTE J1810-197 is >96% pulsed.Comment: Accepted for publication in The Astrophysical Journal. Six pages, 2 figure

    Radio timing and optical photometry of the black widow system PSR J1518+0204C in the globular cluster M5

    Get PDF
    We report on the determination of astrometric, spin and orbital parameters for PSR J1518+0204C, a "black widow" binary millisecond pulsar in the globular cluster M5. The accurate position and orbital parameters obtained from radio timing allowed us to search for the optical companion. By using WFC3/HST images we identified a very faint variable star (m_F390W > 24.8, m_F606W > 24.3, m_F814W > 23.1) located at only 0.25" from the pulsar's timing position. Due to its strong variability, this star is visible only in a sub-sample of images. However, the light curve obtained folding the available data with the orbital parameters of the pulsar shows a maximum at the pulsar inferior conjunction and a possible minimum at the pulsar superior conjunction. Furthermore, the shape of the optical modulation indicates a heating process possibly due to the pulsar wind. This is the first identification of an optical companion to a black widow pulsar in the dense stellar environment of a globular cluster.Comment: Accepted for publication by ApJ; 24 Pages, 5 Figures, 1 Tabl

    Observing Radio Pulsars in the Galactic Centre with the Square Kilometre Array

    Full text link
    The discovery and timing of radio pulsars within the Galactic centre is a fundamental aspect of the SKA Science Case, responding to the topic of "Strong Field Tests of Gravity with Pulsars and Black Holes" (Kramer et al. 2004; Cordes et al. 2004). Pulsars have in many ways proven to be excellent tools for testing the General theory of Relativity and alternative gravity theories (see Wex (2014) for a recent review). Timing a pulsar in orbit around a companion, provides a unique way of probing the relativistic dynamics and spacetime of such a system. The strictest tests of gravity, in strong field conditions, are expected to come from a pulsar orbiting a black hole. In this sense, a pulsar in a close orbit (PorbP_{\rm orb} < 1 yr) around our nearest supermassive black hole candidate, Sagittarius A* - at a distance of ~8.3 kpc in the Galactic centre (Gillessen et al. 2009a) - would be the ideal tool. Given the size of the orbit and the relativistic effects associated with it, even a slowly spinning pulsar would allow the black hole spacetime to be explored in great detail (Liu et al. 2012). For example, measurement of the frame dragging caused by the rotation of the supermassive black hole, would allow a test of the "cosmic censorship conjecture." The "no-hair theorem" can be tested by measuring the quadrupole moment of the black hole. These are two of the prime examples for the fundamental studies of gravity one could do with a pulsar around Sagittarius A*. As will be shown here, SKA1-MID and ultimately the SKA will provide the opportunity to begin to find and time the pulsars in this extreme environment.Comment: 14 pages, 5 figures, to be published in: "Advancing Astrophysics with the Square Kilometre Array", Proceedings of Science, PoS(AASKA14)04

    A Strong Upper Limit on the Pulsed Radio Luminosity of the Compact Object 1RXS J141256.0+792204

    Full text link
    The ROSAT X-ray source 1RXS J141256.0+792204 has recently been identified as a likely compact object whose properties suggest it could be a very nearby radio millisecond pulsar at d = 80 - 260pc. We investigated this hypothesis by searching for radio pulsations using the Westerbork Synthesis Radio Telescope. We observed 1RXS J141256.0+792204 at 385 and 1380MHz, recording at high time and frequency resolution in order to maintain sensitivity to millisecond pulsations. These data were searched both for dispersed single pulses and using Fourier techniques sensitive to constant and orbitally modulated periodicities. No radio pulsations were detected in these observations, resulting in pulsed radio luminosity limits of L_400 ~ 0.3 (d/250pc)^2 mJy kpc^2 and L_1400 ~ 0.03 (d/250pc)^2 mJy kpc^2 at 400 and 1400MHz respectively. The lack of detectable radio pulsations from 1RXS J141256.0+792204 brings into question its identification as a nearby radio pulsar, though, because the pulsar could be beamed away from us, this hypothesis cannot be strictly ruled out.Comment: To appear in A&A. 3 page
    corecore