4 research outputs found

    ENHANCED p53-DEPENDENT GROWTH INHIBITION OF HUMAN GLIOBLASTOMA CELLS BY COMBINATORIAL TREATMENT OF TEMOZOLOMIDE AND NOVEL PURIFIED NATURAL CARBOHYDRATE OF PLEUROTUS FLORIDA

    Get PDF
    Objective: This study was designed to analyze the combinatorial chemotherapeutic effect of temozolomide (TMZ), the most common drug in glioblastoma treatment and a purified carbohydrate (Fr-II) from the edible mushroom Pleurotus florida, on human glioblastoma cell lines.Methods: Fr-II was purified by size-exclusion chromatography and characterised by different mass spectroscopy analysis. Human glioblastoma cells were treated with TMZ, Fr-II, and combination of TMZ and Fr-II. Cell cytotoxicity was measured by MTT assay, cell cycle phase distribution was determined by cell cycle analysis and followed by the relative p53 protein expression was analyzed by western blot analysis.Results: Chemical analysis of Fr-II confirmed the glycosidically linked two units of glucose with terminally attached mannitol with mass of 506 Da. Fr-II treatment exhibited cytotoxicity in both the cell lines in a dose-dependent manner with most effective dose at 200µg/ml. When Fr-II (200µg/ml) was combined with a dose range of TMZ it showed a more cellular cytotoxicity compared to the cytotoxicity of TMZ alone with most oppressive combinatorial dose at 400µM (TMZ)+200µg/ml (Fr-II). In compliance, with the above results, both cell lines showed a 10% increase in no. of cells (p<0.05) in G2/M phase indicating an arrest of cell cycle and increased p53 protein expression (p<0.05) at the combinatorial dose than TMZ alone at 400µM, but Fr-II alone didn't show any cell cycle arrest nor did it show increased p53 expression.Conclusion: Therefore it confirms that Fr-II synergizes with TMZ to significantly intensify its anti-proliferative properties, thereby emerging as an effective element for combinatorial treatment of glioblastoma

    CLEC12A sensitizes differentially responsive breast cancer cells to the anti-cancer effects of artemisinin by repressing autophagy and inflammation

    Get PDF
    BackgroundEnhanced inflammatory responses promote tumor progression by activating toll-like receptors (TLRs), which in turn are inhibited by C-type lectin like receptors (CTLRs), like CLEC12A. Although the presence of CLEC12A in acute myeloid leukemia is well established, its role in non-hematopoietic tumors is still obscure. In hematopoietic tumors, CLEC12A mostly inhibits TLRs and modulates inflammatory responses via NF-κB signaling. In this study, the fate of tumor progression was determined by modulating CLEC12A using artemisinin (ART), a FDA-approved anti-malarial drug, known for its anti-cancer and immunomodulatory properties with minimal adverse effects on normal cells.MethodEffects of ART were primarily determined on hematological factors and primary metastatic organs, such as lungs, kidney and liver in normal and tumor-bearing BALB/c mice. Tumor-bearing mice were treated with different concentrations of ART and expressions of CLEC12A and associated downstream components were determined. CLEC12A was overexpressed in MDA-MB-231 and 4T1 cells, and the effects of ART were analyzed in the overexpressed cells. Silencing TLR4 using vivo morpholino was performed to elucidate its role in tumor progression in response to ART. Finally, CLEC12A modulation by ART was evaluated in the resident cancer stem cell (CSC) population.ResultsART did not alter physiology of normal mice, in contrast to tumor-bearing mice, where ART led to tumor regression. In addition, ART reduced expression of CLEC12A. Expectedly, TLR4 expression increased, but surprisingly, that of NF-κB (RelA) and JNK/pJNK decreased, along with reduced inflammation, reduced autophagy and increased apoptosis. All the above observations reverted on overexpression of CLEC12A in MDA-MB-231 and 4T1 cells. Inhibition of TLR4, however, indicated no change in the expressions of CLEC12A, NF-κB, or apoptotic markers. The effect of ART showed a similar trend in the CSC population as in cancer cells.ConclusionThis study, for the first time, confirmed a differential role of CLEC12A in non-hematopoietic tumor and cancer stem cells in response to ART. Subsequent interaction and modulation of CLEC12A with ART induced tumor cell death and abrogation of CSCs, confirming a more comprehensive tumor therapy with reduced risk of recurrence. Therefore, ART may be repurposed as an effective drug for cancer treatment in future
    corecore