1,742 research outputs found

    Chronic heart failure is characterized by altered mitochondrial function and structure in circulating leucocytes

    Get PDF
    Oxidative stress is currently viewed as a key factor in the genesis and progression of Heart Failure (HF). The aim of this study was to characterize the mitochondrial changes linked to oxidative stress generation in circulating peripheral blood mononuclear cells isolated from chronic HF patients (HF_PBMCs) in order to highlight the involvement of mitochondrial dysfunction in the pathophysiology of HF. To assess the production of reactive oxygen species (ROS), mitochondrial function and ultrastructure and the mitophagic flux in circulating PBMCs we enrolled 15 patients with HF and a control group of ten healthy subjects. The HF_PBMCs showed a mitochondrial population consisting of damaged and less functional organelles responsible of higher superoxide anion production both at baseline and under in vitro stress conditions, with evidence of cellular apoptosis. Although the mitophagic flux at baseline was enhanced in HF_PBMCs at level similar to those that could be achieved in control PBMCs only under inflammatory stress conditions, the activation of mitophagy was unable to preserve a proper mitochondrial dynamics upon stress stimuli in HF. In summary, circulating HF_PBMCs show structural and functional derangements of mitochondria with overproduction of reactive oxidant species. This mitochondrial failure sustains a leucocyte dysfunctional status in the blood that may contribute to development and persistence of stress conditions within the cardiovascular system in HF

    Less air pollution did not explain the decline in admissions for AMI during the first wave of COVID-19 pandemic in Sardinia, Italy

    Get PDF
    During the COVID-19 pandemic, hospitalizations for acute myocardial infarction (AMI) decreased worldwide. We compared the admissions for AMI in the four regional 24/7 cath lab during the national lockdown, the 8 weeks before the lockdown, the 8 weeks after the e lockdown, and the corresponding time period in 2019 and we analyzed the average level of pollution in the studies areas. A marked decline in AMI admissions was observed during the lockdown period in comparison with the 8 weeks before the lockdown (p < 0.0001) and a significant increase in the 8 weeks after the lockdown (p < 0.00001). No significant change in air pollutants density were highlighted. Since air pollution did not change substantially in our region, the environment factor cannot explain the decline in the number of admissions for AMI we recorded during the lockdown. Fear of contagion is the most plausible reason for the drop of hospitalizations during the lockdown period

    The Mice Drawer System (MDS) Experiment and the Space Endurance Record-Breaking Mice

    Get PDF
    The Italian Space Agency, in line with its scientific strategies and the National Utilization Plan for the International Space Station (ISS), contracted Thales Alenia Space Italia to design and build a spaceflight payload for rodent research on ISS: the Mice Drawer System (MDS). The payload, to be integrated inside the Space Shuttle middeck during transportation and inside the Express Rack in the ISS during experiment execution, was designed to function autonomously for more than 3 months and to involve crew only for maintenance activities. In its first mission, three wild type (Wt) and three transgenic male mice over-expressing pleiotrophin under the control of a bone-specific promoter (PTN-Tg) were housed in the MDS. At the time of launch, animals were 2-months old. MDS reached the ISS on board of Shuttle Discovery Flight 17A/STS-128 on August 28th, 2009. MDS returned to Earth on November 27th, 2009 with Shuttle Atlantis Flight ULF3/STS-129 after 91 days, performing the longest permanence of mice in space. Unfortunately, during the MDS mission, one PTN-Tg and two Wt mice died due to health status or payload-related reasons. The remaining mice showed a normal behavior throughout the experiment and appeared in excellent health conditions at landing. During the experiment, the mice health conditions and their water and food consumption were daily checked. Upon landing mice were sacrificed, blood parameters measured and tissues dissected for subsequent analysis. To obtain as much information as possible on microgravity-induced tissue modifications, we organized a Tissue Sharing Program: 20 research groups from 6 countries participated. In order to distinguish between possible effects of the MDS housing conditions and effects due to the near-zero gravity environment, a ground replica of the flight experiment was performed at the University of Genova. Control tissues were collected also from mice maintained on Earth in standard vivarium cages

    Microvascular Density, Endothelial Area, and Ki-67 Proliferative Index Correlate Each Other in Cat Post-Injection Fibrosarcoma

    Get PDF
    Soft tissue sarcomas are a large group of different tumor types both in humans and in animals. Among them, fibrosarcoma is the most frequent malignant mesenchymal tumoral form in cats, representing up to 28% of all cat skin tumors, while human fibrosarcoma, fortunately, only represents 5% of all sarcomas and 0.025% of the world-wide burden of tumors. This low incidence in humans leads to consideration of this group of tumoral diseases as rare, so therapeutic options are few due to the difficulty of starting clinical trials. In this context, the identification of research models for fibrosarcomas could be of great interest to deepen knowledge in this field and recognize new or possible biological pathways involved in tumor progression and metastasis. Angiogenesis is considered a fundamental scattering cause of tumor aggressiveness and progression in all forms of cancer, but only a few research parameters were developed and reported to express them quantitatively and qualitatively. The role in angiogenesis of microenvironmental stromal cells, such as fibroblasts, lymphocytes, mast cells, and macrophages, was largely demonstrated since this topic was first approached, while quantification of new vessels and their blood capacity in tumoral area is a relatively recent approach that could be well developed thanks to expertise in immunohistochemistry and image analysis. In this paper, a crossing study evaluating microvascular density (MVD), endothelial area (EA), and Ki-67 proliferative index was reported for a series of formalin-fixed and paraffin-embedded tissue samples from 99 cat patients, affected by cat post-injection fibrosarcoma, by using a till ×400 magnification light microscopy. We aim to demonstrate that cat pets may be considered a useful animal model for better studying the correspondent human diseases and we report, for the first time to our knowledge, experimental data in terms of correlation among MVD, EA, and Ki-67 strictly involved in aggressiveness and tumoral progression

    Bone Turnover in Wild Type and Pleiotrophin-Transgenic Mice Housed for Three Months in the International Space Station (ISS)

    Get PDF
    Bone is a complex dynamic tissue undergoing a continuous remodeling process. Gravity is a physical force playing a role in the remodeling and contributing to the maintenance of bone integrity. This article reports an investigation on the alterations of the bone microarchitecture that occurred in wild type (Wt) and pleiotrophin-transgenic (PTN-Tg) mice exposed to a near-zero gravity on the International Space Station (ISS) during the Mice Drawer System (MDS) mission, to date, the longest mice permanence (91 days) in space. The transgenic mouse strain over-expressing pleiotrophin (PTN) in bone was selected because of the PTN positive effects on bone turnover. Wt and PTN-Tg control animals were maintained on Earth either in a MDS payload or in a standard vivarium cage. This study revealed a bone loss during spaceflight in the weight-bearing bones of both strains. For both Tg and Wt a decrease of the trabecular number as well as an increase of the mean trabecular separation was observed after flight, whereas trabecular thickness did not show any significant change. Non weight-bearing bones were not affected. The PTN-Tg mice exposed to normal gravity presented a poorer trabecular organization than Wt mice, but interestingly, the expression of the PTN transgene during the flight resulted in some protection against microgravity’s negative effects. Moreover, osteocytes of the Wt mice, but not of Tg mice, acquired a round shape, thus showing for the first time osteocyte space-related morphological alterations in vivo. The analysis of specific bone formation and resorption marker expression suggested that the microgravity-induced bone loss was due to both an increased bone resorption and a decreased bone deposition. Apparently, the PTN transgene protection was the result of a higher osteoblast activity in the flight mice

    Vaccines against human HER2 prevent mammary carcinoma in mice transgenic for human HER2

    Get PDF
    INTRODUCTION: The availability of mice transgenic for the human HER2 gene (huHER2) and prone to the development of HER2-driven mammary carcinogenesis (referred to as FVB-huHER2 mice) prompted us to study active immunopreventive strategies targeting the human HER2 molecule in a tolerant host. METHODS: FVB-huHER2 were vaccinated with either IL-12-adjuvanted human HER2-positive cancer cells or DNA vaccine carrying chimeric human-rat HER2 sequences. Onset and number of mammary tumors were recorded to evaluate vaccine potency. Mice sera were collected and passively transferred to xenograft-bearing mice to assess their antitumor efficacy. RESULTS: Both cell and DNA vaccines significantly delayed tumor onset, leading to about 65% tumor-free mice at 70 weeks, whereas mock-vaccinated FVB-huHER2 controls developed mammary tumors at a median age of 45 weeks. In the DNA vaccinated group, 65% of mice were still tumor-free at about 90 weeks of age. The number of mammary tumors per mouse was also significantly reduced in vaccinated mice. Vaccines broke the immunological tolerance to the huHER2 transgene, inducing both humoral and cytokine responses. The DNA vaccine mainly induced a high and sustained level of anti-huHER2 antibodies, the cell vaccine also elicited interferon (IFN)-gamma production. Sera of DNA-vaccinated mice transferred to xenograft-carrying mice significantly inhibited the growth of human HER2-positive cancer cells. CONCLUSIONS: Anti-huHER2 antibodies elicited in the tolerant host exert antitumoral activity

    Dactinomycin induces complete remission associated with nucleolar stress response in relapsed/refractory NPM1-mutated AML

    Get PDF
    Acute myeloid leukemia (AML) with mutated NPM1 accounts for one-third of newly diagnosed AML. Despite recent advances, treatment of relapsed/refractory NPM1-mutated AML remains challenging, with the majority of patients eventually dying due to disease progression. Moreover, the prognosis is particularly poor in elderly and unfit patients, mainly because they cannot receive intensive treatment. Therefore, alternative treatment strategies are needed. Dactinomycin is a low-cost chemotherapeutic agent, which has been anecdotally reported to induce remission in NPM1-mutated patients, although its mechanism of action remains unclear. Here, we describe the results of a single-center phase 2 pilot study investigating the safety and efficacy of single-agent dactinomycin in relapsed/refractory NPM1-mutated adult AML patients, demonstrating that this drug can induce complete responses and is relatively well tolerated. We also provide evidence that the activity of dactinomycin associates with nucleolar stress both in vitro and in vivo in patients. Finally, we show that low-dose dactinomycin generates more efficient stress response in cells expressing NPM1 mutant compared to wild-type cells, suggesting that NPM1-mutated AML may be more sensitive to nucleolar stress. In conclusion, we establish that dactinomycin is a potential therapeutic alternative in relapsed/refractory NPM1-mutated AML that deserves further investigation in larger clinical studies

    Extenso ferimento em lábio inferior por mordida humana: relato de caso / Extensive lower lip injury from human bite: case report

    Get PDF
    Os ferimentos causados por mordedura normalmente são causados por animais e menos frequentemente por humanos. Nota-se nesses tipos de ferimentos uma incidência aumentada de complicações infecciosas devido à alta contaminação presente na saliva e cavidade bucal. O atendimento desses pacientes consiste em analgesia, seguida por toalete abundante da ferida, uso de penicilinas de amplo espectro, investigação de possíveis doenças infectocontagiosas, reabilitação funcional e estética da região afetada. Relata-se o caso de uma paciente do gênero feminino, 34 anos, vítima de agressão física por mordida humana, apresentando uma extensa avulsão na região do lábio inferior. Ao exame físico, notou-se uma deformidade na linha média, de espessura total e envolvendo aproximadamente 2/3 do lábio inferior. O tratamento de escolha foi a reestruturação do defeito sob anestesia geral, através de sutura por primeira intenção da lesão após toalete, respeitando os planos de tecido mole. Foi realizada analgesia com opióides, antibioticoterapia específica e indicada profilaxia antitetânica. Foi possível um acompanhamento pós-operatório de 3 meses, tendo-se obtido um resultado estético e funcional satisfatório, sem complicações infecciosas pós operatórias ou deiscência de suturas. 
    • …
    corecore