65 research outputs found

    Demographic uncertainty and disease risk influence climate-informed management of an alpine species

    Get PDF
    Climate change is expected to disproportionately affect species occupying ecosystems with relatively hard boundaries, such as alpine ecosystems. Wildlife managers must identify actions to conserve and manage alpine species into the future, while considering other issues and uncertainties. Climate change and respiratory pathogens associated with widespread pneumonia epidemics in bighorn sheep (Ovis canadensis) may negatively affect mountain goat (Oreamnos americanus) populations. Mountain goat demographic and population data are challenging to collect and sparsely available, making population management decisions difficult. We developed predictive models incorporating these uncertainties and analyzed results within a structured decision making framework to make management recommendations and identify priority information needs in Montana, USA. We built resource selection models to forecast occupied mountain goat habitat and account for uncertainty in effects of climate change, and a Leslie matrix projection model to predict population trends while accounting for uncertainty in population demographics and dynamics. We predicted disease risks while accounting for uncertainty about presence of pneumonia pathogens and risk tolerance for mixing populations during translocations. Our analysis predicted that new introductions would produce more area occupied by mountain goats at mid-century, regardless of the effects of climate change. Population augmentations, carnivore management, and harvest management may improve population trends, although this was associated with considerable uncertainty. Tolerance for risk of disease transmission affected optimal management choices because translocations are expected to increase disease risks for mountain goats and sympatric bighorn sheep. Expected value of information analyses revealed that reducing uncertainty related to population dynamics would affect the optimal choice among management strategies to improve mountain goat trends. Reducing uncertainty related to the presence of pneumonia-associated pathogens and consequences of mixing microbial communities should reduce disease risks if translocations are included in future management strategies. We recommend managers determine tolerance for disease risks associated with translocations that they and constituents are willing to accept. From this, an adaptive management program can be constructed wherein a portfolio of management actions are chosen based on risk tolerance in each population range, combined with the amount that uncertainty is reduced when paired with monitoring, to ultimately improve achievement of fundamental objectives

    Exploring the gonad transcriptome of two extreme male pigs with RNA-seq

    Get PDF
    Background: Although RNA-seq greatly advances our understanding of complex transcriptome landscapes, such as those found in mammals, complete RNA-seq studies in livestock and in particular in the pig are still lacking. Here, we used high-throughput RNA sequencing to gain insight into the characterization of the poly-A RNA fraction expressed in pig male gonads. An expression analysis comparing different mapping approaches and detection of allele specific expression is also discussed in this study. Results: By sequencing testicle mRNA of two phenotypically extreme pigs, one Iberian and one Large White, we identified hundreds of unannotated protein-coding genes (PcGs) in intergenic regions, some of them presenting orthology with closely related species. Interestingly, we also detected 2047 putative long non-coding RNA (lncRNA), including 469 with human homologues. Two methods, DEGseq and Cufflinks, were used for analyzing expression. DEGseq identified 15% less expressed genes than Cufflinks, because DEGseq utilizes only unambiguously mapped reads. Moreover, a large fraction of the transcriptome is made up of transposable elements (14500 elements encountered), as has been reported in previous studies. Gene expression results between microarray and RNA-seq technologies were relatively well correlated (r = 0.71 across individuals). Differentially expressed genes between Large White and Iberian showed a significant overrepresentation of gamete production and lipid metabolism gene ontology categories. Finally, allelic imbalance was detected in ~ 4% of heterozygous sites. Conclusions: RNA-seq is a powerful tool to gain insight into complex transcriptomes. In addition to uncovering many unnanotated genes, our study allowed us to determine that a considerable fraction is made up of long non-coding transcripts and transposable elements. Their biological roles remain to be determined in future studies. In terms of differences in expression between Large White and Iberian pigs, these were largest for genes involved in spermatogenesis and lipid metabolism, which is consistent with phenotypic extreme differences in prolificacy and fat deposition between these two breeds

    Expression of PPARδ in multistage carcinogenesis of the colorectum: implications of malignant cancer morphology

    Get PDF
    Whether peroxisome proliferator-activated receptor (PPAR) δ is a good target for the chemoprevention and/or treatment of colorectal cancer (CRC) remains controversial. Our goal was to examine PPARδ expression in multistage carcinogenesis of the colorectum and to assess the relevance of PPARδ in CRC. Immunohistochemical analysis indicated that PPARδ expression increased from normal mucosa to adenomatous polyps to CRC. In cancer tissues, the PPARδ protein was accumulated only in those cancer cells with highly malignant morphology, as represented by a large-sized nucleus, round-shaped nucleus, and presence of clear nucleoli. Interestingly, the cancer tissue often contained both PPARδ-positive and -negative areas, each retaining their respective specific morphological features. Moreover, this pattern persisted even when PPARδ-positive and -negative cells were aligned next to each other within a single cancer nest or gland and was present in the majority of CRC cases. Immunohistochemistry for Ki-67 proliferation marker showed no significant correlation between Ki-67 and PPARδ in CRC samples. Based on Western blot analysis and quantitative RT–PCR, high PPARδ protein expression correlated with high PPARδ mRNA levels. Peroxisome proliferator-activated receptor δ may have a supporting role in tumorigenesis, and the close association between PPARδ expression and malignant morphology of CRC cells suggests a pivotal role in cancer tissue

    CCAAT/Enhancer Binding Protein alpha uses distinct domains to prolong pituitary cells in the Growth 1 and DNA Synthesis phases of the cell cycle

    Get PDF
    BACKGROUND: A number of transcription factors coordinate differentiation by simultaneously regulating gene expression and cell proliferation. CCAAT/enhancer binding protein alpha (C/EBPα) is a basic/leucine zipper transcription factor that integrates transcription with proliferation to regulate the differentiation of tissues involved in energy balance. In the pituitary, C/EBPα regulates the transcription of a key metabolic regulator, growth hormone. RESULTS: We examined the consequences of C/EBPα expression on proliferation of the transformed, mouse GHFT1-5 pituitary progenitor cell line. In contrast to mature pituitary cells, GHFT1-5 cells do not contain C/EBPα. Ectopic expression of C/EBPα in the progenitor cells resulted in prolongation of both growth 1 (G1) and the DNA synthesis (S) phases of the cell cycle. Transcription activation domain 1 and 2 of C/EBPα were required for prolongation of G1, but not of S. Some transcriptionally inactive derivatives of C/EBPα remained competent for G1 and S phase prolongation. C/EBPα deleted of its leucine zipper dimerization functions was as effective as full-length C/EBPα in prolonging G1 and S. CONCLUSION: We found that C/EBPα utilizes mechanistically distinct activities to prolong the cell cycle in G1 and S in pituitary progenitor cells. G1 and S phase prolongation did not require that C/EBPα remained transcriptionally active or retained the ability to dimerize via the leucine zipper. G1, but not S, arrest required a domain overlapping with C/EBPα transcription activation functions 1 and 2. Separation of mechanisms governing proliferation and transcription permits C/EBPα to regulate gene expression independently of its effects on proliferation

    Multiple Roles for the Non-Coding RNA SRA in Regulation of Adipogenesis and Insulin Sensitivity

    Get PDF
    Peroxisome proliferator-activated receptor-γ (PPARγ) is a master transcriptional regulator of adipogenesis. Hence, the identification of PPARγ coactivators should help reveal mechanisms controlling gene expression in adipose tissue development and physiology. We show that the non-coding RNA, Steroid receptor RNA Activator (SRA), associates with PPARγ and coactivates PPARγ-dependent reporter gene expression. Overexpression of SRA in ST2 mesenchymal precursor cells promotes their differentiation into adipocytes. Conversely, knockdown of endogenous SRA inhibits 3T3-L1 preadipocyte differentiation. Microarray analysis reveals hundreds of SRA-responsive genes in adipocytes, including genes involved in the cell cycle, and insulin and TNFα signaling pathways. Some functions of SRA may involve mechanisms other than coactivation of PPARγ. SRA in adipocytes increases both glucose uptake and phosphorylation of Akt and FOXO1 in response to insulin. SRA promotes S-phase entry during mitotic clonal expansion, decreases expression of the cyclin-dependent kinase inhibitors p21Cip1 and p27Kip1, and increases phosphorylation of Cdk1/Cdc2. SRA also inhibits the expression of adipocyte-related inflammatory genes and TNFα-induced phosphorylation of c-Jun NH2-terminal kinase. In conclusion, SRA enhances adipogenesis and adipocyte function through multiple pathways

    Small RNA-Directed Epigenetic Natural Variation in Arabidopsis thaliana

    Get PDF
    Progress in epigenetics has revealed mechanisms that can heritably regulate gene function independent of genetic alterations. Nevertheless, little is known about the role of epigenetics in evolution. This is due in part to scant data on epigenetic variation among natural populations. In plants, small interfering RNA (siRNA) is involved in both the initiation and maintenance of gene silencing by directing DNA methylation and/or histone methylation. Here, we report that, in the model plant Arabidopsis thaliana, a cluster of ∼24 nt siRNAs found at high levels in the ecotype Landsberg erecta (Ler) could direct DNA methylation and heterochromatinization at a hAT element adjacent to the promoter of FLOWERING LOCUS C (FLC), a major repressor of flowering, whereas the same hAT element in ecotype Columbia (Col) with almost identical DNA sequence, generates a set of low abundance siRNAs that do not direct these activities. We have called this hAT element MPF for Methylated region near Promoter of FLC, although de novo methylation triggered by an inverted repeat transgene at this region in Col does not alter its FLC expression. DNA methylation of the Ler allele MPF is dependent on genes in known silencing pathways, and such methylation is transmissible to Col by genetic crosses, although with varying degrees of penetrance. A genome-wide comparison of Ler and Col small RNAs identified at least 68 loci matched by a significant level of ∼24 nt siRNAs present specifically in Ler but not Col, where nearly half of the loci are related to repeat or TE sequences. Methylation analysis revealed that 88% of the examined loci (37 out of 42) were specifically methylated in Ler but not Col, suggesting that small RNA can direct epigenetic differences between two closely related Arabidopsis ecotypes

    Chlorinated biphenyls effect on estrogen-related receptor expression, steroid secretion, mitochondria ultrastructure but not on mitochondrial membrane potential in Leydig cells

    Get PDF

    Restricting retrotransposons: a review

    Get PDF
    corecore