175 research outputs found

    The effects of transformational curriculum on a second grade social sciences program

    Get PDF
    From the White House to the statehouse to our local schools, politicians, educators, and even some parents have been worrying about the condition of education in our schools. Some criticize our present educational system, citing reports about the inability of American students to perform as well on content area tests as students from other nations (Brooks & Brooks, 1993 ). Many educators believe that questions regarding understanding and meaning are much more important than the results derived from achievement tests: the process is valued more than the product. Even though educators may feel this way, many still do skill and drill tasks, standardized testing, and go step by step through a text manual to teach their students. Some teachers believe it\u27s much easier and less time consuming to use a manual for the concepts and key ideas rather than pulling together materials from different resources to teach a unit. As a result, children being taught skills in isolation are not learning to apply those skills in context

    Translational Research and Medicine at NASA: From Earth to Space and Back Again

    Get PDF
    The Space Environment provides many challenges to the human physiology and therefore to extended habitation and exploration. Translational research and medical strategies are meeting these challenges by combining Earth based medical solutions with innovative and developmental engineering approaches. Translational methodologies are current applied to spaceflight related dysregulations in the areas of: (1) cardiovascular fluid shifts, intracranial hypertension and neuro-ocular impairment 2) immune insufficiency and suppression/viral re-expression, 3) bone loss and fragility (osteopenia/osteoporosis) and muscle wasting, and finally 4) radiation sensitivity and advanced ageing. Over 40 years of research into these areas have met with limited success due to lack of tools and basic understanding of central issues that cause physiologic maladaptaion and distrupt homeostatis. I will discuss the effects of living in space (reduced gravity, increased radiation and varying atmospheric conditions [EVA]) during long-duration, exploration-class missions and how translational research has benefited not only space exploration but also Earth based medicine. Modern tools such as telemedicine advances in genomics, proteomics, and metabolomics (Omicssciences) has helped address syndromes, at the systemic level by enlisting a global approach to assessing spaceflight physiology and to develop countermeasures thereby permitting our experience in space to be translated to the Earth's medical community

    Resveratrol Effects on Astrocyte Function: Relevance to Neurodegenerative Diseases

    Get PDF
    Inflammatory molecules have been implicated in the pathogenesis of neurodegenerative diseases such as Parkinson’s disease, Alzheimer’s disease, and multiple sclerosis. Resveratrol is an antifungal compound found in the skins of red grapes and other fruits and nuts. We examined the ability of resveratrol to inhibit lipopolysaccharide (LPS)-induced production of inflammatory molecules from primary mouse astrocytes. Resveratrol inhibited LPS-induced production of nitric oxide (NO); the cytokines tumor necrosis factor-alpha (TNF-α), interleukin 1-beta (IL-1β), and IL-6; and the chemokine monocyte chemotactic protein-1 (MCP-1), which play critical roles in innate immunity, by astrocytes. Resveratrol also suppressed astrocyte production of IL-12p40 and IL-23, which are known to alter the phenotype of T cells involved in adaptive immunity. Finally resveratrol inhibited astrocyte production of C-reactive protein (CRP), which plays a role in a variety of chronic inflammatory disorders. Collectively, these studies suggest that resveratrol may be an effective therapeutic agent in neurodegenerative diseases initiated or maintained by inflammatory processes

    Linking Animals Aloft with the Terrestrial Landscape

    Get PDF
    Despite using the aerosphere for many facets of their life, most flying animals (i.e., birds, bats, some insects) are still bound to terrestrial habitats for resting, feeding, and reproduction. Comprehensive broad-scale observations by weather surveillance radars of animals as they leave terrestrial habitats for migration or feeding flights can be used to map their terrestrial distributions either as point locations (e.g., communal roosts) or as continuous surface layers (e.g., animal densities in habitats across a landscape). We discuss some of the technical challenges to reducing measurement biases related to how radars sample the aerosphere and the flight behavior of animals. We highlight a recently developed methodological approach that precisely and quantitatively links the horizontal spatial structure of birds aloft to their terrestrial distributions and provides novel insights into avian ecology and conservation across broad landscapes. Specifically, we present case studies that (1) elucidate how migrating birds contend with crossing ecological barriers and extreme weather events, (2) identify important stopover areas and habitat use patterns of birds along their migration routes, and (3) assess waterfowl response to wetland habitat management and restoration. These studies aid our understanding of how anthropogenic modification of the terrestrial landscape (e.g., urbanization, habitat management), natural geographic features, and weather (e.g., hurricanes) can affect the terrestrial distributions of flying animals

    Infant attraction: why social bridging matters for female leadership in Tibetan macaques

    Get PDF
    Leadership is a key issue in the study of collective behavior in social animals. Affiliation–leadership models predict that dyadic partner preferences based on grooming relationships or alliance formation positively affect an individual’s decision to follow or support a conspecific. In the case of many primate species, females without young infants are attracted to mother–infant dyads. However, the effects of mother–infant–female associations on affiliation–leadership models remain less clear. In free-ranging Tibetan macaques Macaca thibetana, we used social network analysis to examine the importance of “mother-infant-adult female” social bridging events as a predictor of who leads and who follows during group movement. Social bridging is a common behavior in Tibetan macaques and occurs when 2 adults, generally females, engage in coordinated infant handling. Using eigenvector centrality coefficients of social bridging as a measure of social affiliation, we found that among lactating females, initiating bridging behavior with another female played a significant role in leadership success, with the assisting female following the mother during group movement. Among nonlactating females, this was not the case. Our results indicate that infant attraction can be a strong trigger in collective action and directing group movement in Tibetan macaques and provides benefits to mothers who require helpers and social support in order to ensure the safety of their infants. Our study provides new insights into the importance of the third-party effect in rethinking affiliation–leadership models in group-living animals

    Linking Animals Aloft with the Terrestrial Landscape

    Get PDF
    Despite using the aerosphere for many facets of their life, most flying animals (i.e., birds, bats, some insects) are still bound to terrestrial habitats for resting, feeding, and reproduction. Comprehensive broad-scale observations by weather surveillance radars of animals as they leave terrestrial habitats for migration or feeding flights can be used to map their terrestrial distributions either as point locations (e.g., communal roosts) or as continuous surface layers (e.g., animal densities in habitats across a landscape). We discuss some of the technical challenges to reducing measurement biases related to how radars sample the aerosphere and the flight behavior of animals. We highlight a recently developed methodological approach that precisely and quantitatively links the horizontal spatial structure of birds aloft to their terrestrial distributions and provides novel insights into avian ecology and conservation across broad landscapes. Specifically, we present case studies that (1) elucidate how migrating birds contend with crossing ecological barriers and extreme weather events, (2) identify important stopover areas and habitat use patterns of birds along their migration routes, and (3) assess waterfowl response to wetland habitat management and restoration. These studies aid our understanding of how anthropogenic modification of the terrestrial landscape (e.g., urbanization, habitat management), natural geographic features, and weather (e.g., hurricanes) can affect the terrestrial distributions of flying animals

    Quantifying injury to common bottlenose dolphins from the Deepwater Horizon oil spill using an age-, sex- and class-structured population model

    Get PDF
    Field studies documented increased mortality, adverse health effects, and reproductive failure in common bottlenose dolphins Tursiops truncatus following the Deepwater Horizon (DWH) oil spill. In order to determine the appropriate type and amount of restoration needed to compensate for losses, the overall extent of injuries to dolphins had to be quantified. Simply counting dead individuals does not consider long-term impacts to populations, such as the loss of future reproductive potential from mortality of females, or the chronic health effects that continue to compromise survival long after acute effects subside. Therefore, we constructed a sex- and agestructured model of population growth and included additional class structure to represent dolphins exposed and unexposed to DWH oil. The model was applied for multiple stocks to predict injured population trajectories using estimates of post-spill survival and reproductive rates. Injured trajectories were compared to baseline trajectories that were expected had the DWH incident not occurred. Two principal measures of injury were computed: (1) lost cetacean years (LCY); the difference between baseline and injured population size, summed over the modeled time period, and (2) time to recovery; the number of years for the stock to recover to within 95% of baseline. For the dolphin stock in Barataria Bay, Louisiana, the estimated LCY was substantial: 30 347 LCY (95% CI: 11 511 to 89 746). Estimated time to recovery was 39 yr (95% CI: 24 to 80). Similar recovery timelines were predicted for stocks in the Mississippi River Delta, Mississippi Sound, Mobile Bay and the Northern Coastal Stock.Publisher PDFPeer reviewe

    Bartonella species detection in captive, stranded and free-ranging cetaceans

    Get PDF
    We present prevalence of Bartonella spp. for multiple cohorts of wild and captive cetaceans. One hundred and six cetaceans including 86 bottlenose dolphins (71 free-ranging, 14 captive in a facility with a dolphin experiencing debility of unknown origin, 1 stranded), 11 striped dolphins, 4 harbor porpoises, 3 Risso's dolphins, 1 dwarf sperm whale and 1 pygmy sperm whale (all stranded) were sampled. Whole blood (n = 95 live animals) and tissues (n = 15 freshly dead animals) were screened by PCR (n = 106 animals), PCR of enrichment cultures (n = 50 animals), and subcultures (n = 50 animals). Bartonella spp. were detected from 17 cetaceans, including 12 by direct extraction PCR of blood or tissues, 6 by PCR of enrichment cultures, and 4 by subculture isolation. Bartonella spp. were more commonly detected from the captive (6/14, 43%) than from free-ranging (2/71, 2.8%) bottlenose dolphins, and were commonly detected from the stranded animals (9/21, 43%; 3/11 striped dolphins, 3/4 harbor porpoises, 2/3 Risso's dolphins, 1/1 pygmy sperm whale, 0/1 dwarf sperm whale, 0/1 bottlenose dolphin). Sequencing identified a Bartonella spp. most similar to B. henselae San Antonio 2 in eight cases (4 bottlenose dolphins, 2 striped dolphins, 2 harbor porpoises), B. henselae Houston 1 in three cases (2 Risso's dolphins, 1 harbor porpoise), and untyped in six cases (4 bottlenose dolphins, 1 striped dolphin, 1 pygmy sperm whale). Although disease causation has not been established, Bartonella species were detected more commonly from cetaceans that were overtly debilitated or were cohabiting in captivity with a debilitated animal than from free-ranging animals. The detection of Bartonella spp. from cetaceans may be of pathophysiological concern

    An expert-based system to predict population survival rate from health data

    Get PDF
    This work was supported by the Office of Naval Research Marine Mammal Biology Program [grant number N00014-17-1-2868].Timely detection and understanding of causes for population decline are essential for effective wildlife management and conservation. Assessing trends in population size has been the standard approach but we propose that monitoring population health could prove more effective. We collated data from seven bottlenose dolphin (Tursiops truncatus) populations in southeastern U.S. to develop the Veterinary Expert System for Outcome Prediction (VESOP), which estimates survival probability using a suite of health measures identified by experts as indices for inflammatory, metabolic, pulmonary, and neuroendocrine systems. VESOP was implemented using logistic regression within a Bayesian analysis framework, and parameters were fit using records from five of the sites that had a robust stranding network and frequent photographic identification (photo-ID) surveys to document definitive survival outcomes. We also conducted capture-mark-recapture (CMR) analyses of photo-ID data to obtain separate estimates of population survival rates for comparison with VESOP survival estimates. VESOP analyses found multiple measures of health, particularly markers of inflammation, were predictive of 1- and 2-year individual survival. The highest mortality risk one year following health assessment related to low alkaline phosphatase, with an odds ratio of 10.2 (95% CI 3.41-26.8), while 2-year mortality was most influenced by elevated globulin (9.60; 95% CI 3.88-22.4); both are markers of inflammation. The VESOP model predicted population-level survival rates that correlated with estimated survival rates from CMR analyses for the same populations (1-year Pearson's r = 0.99; p = 1.52e-05, 2-year r = 0.94; p = 0.001). While our proposed approach will not detect acute mortality threats that are largely independent of animal health, such as harmful algal blooms, it is applicable for detecting chronic health conditions that increase mortality risk. Random sampling of the population is important and advancement in remote sampling methods could facilitate more random selection of subjects, obtainment of larger sample sizes, and extension of the approach to other wildlife species.Publisher PDFPeer reviewe
    • …
    corecore