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Abstract

Despite using the aerosphere for many facets of their life, most flying animals (i.e.,

birds, bats, some insects) are still bound to terrestrial habitats for resting, feeding,

and reproduction. Comprehensive broad-scale observations by weather surveil-

lance radars of animals as they leave terrestrial habitats for migration or feeding

flights can be used to map their terrestrial distributions either as point locations

(e.g., communal roosts) or as continuous surface layers (e.g., animal densities in

habitats across a landscape). We discuss some of the technical challenges to

reducing measurement biases related to how radars sample the aerosphere and

the flight behavior of animals. We highlight a recently developed methodological

approach that precisely and quantitatively links the horizontal spatial structure of

birds aloft to their terrestrial distributions and provides novel insights into avian

ecology and conservation across broad landscapes. Specifically, we present case

studies that (1) elucidate how migrating birds contend with crossing ecological
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barriers and extreme weather events, (2) identify important stopover areas and

habitat use patterns of birds along their migration routes, and (3) assess waterfowl

response to wetland habitat management and restoration. These studies aid our

understanding of how anthropogenic modification of the terrestrial landscape

(e.g., urbanization, habitat management), natural geographic features, and weather

(e.g., hurricanes) can affect the terrestrial distributions of flying animals.

1 Using Weather Radar to Link Flying Animals Aloft
with Terrestrial Habitats

Despite using the aerosphere for many facets of their life, flying animals are still

bound to terrestrial habitats for resting, feeding, and/or breeding. The alpine swift

(Tachymarptis melba) exhibits perhaps the most extreme use of the aerosphere of

any vertebrate by being able to remain airborne for 200 days while performing all

vital physiological processes including sleeping (Liechti et al. 2013). However, it

still returns to cliffs or caves to breed. Accordingly, the ecologies of animals in the

air and on the ground coevolve and are inextricably linked. Terrestrial habitat

quality, abundance, and distribution are of vital importance for maintaining species

of flying animals. Additionally, terrestrial habitat plays an important role in shaping

morphological, physiological, behavioral, and life history traits that impact the

aerial ecology of flying animals. For example, habitat structure and selection are

closely related to the wing morphology and the foraging and flight activity of birds

(Robinson and Holmes 1982; Janes 1985; Winkler and Leisler 1985), bats

(Brigham et al. 1997; Hodgkison et al. 2004), and insects (Hassell and Southwood

1978; Vandewoestijne and Van Dyck 2011). In turn, the aeroecology of flying

animals shapes their terrestrial life histories and habitat use. For example, the

improved dispersal capabilities of flying animals are shaped by global wind patterns

and influence the evolution of migratory syndromes and pathways that expose

animals to a changing suite of terrestrial habitats throughout the annual cycle

(Able 1972; Gauthreaux 1980; Alerstam 1993; Moore et al. 1995; Drake and

Gatehouse 1996; Gauthreaux et al. 2005; Dingle and Drake 2007; La Sorte et al.

2014a; Kranstauber et al. 2015).

Among available research tools for measuring the abundance of animals aloft,

weather surveillance radars (WSR) offer the distinct advantage of being able to

detect animal movements across broad spatial domains (~100 km radius) at both a

comparatively fine spatial resolution (~1–150 ha) and at frequent intervals

(~4–10 min). Large networks of radars in the United States (Gauthreaux et al.

2003), Canada (Gagnon et al. 2011), and Europe (Shamoun-Baranes et al. 2014)

provide opportunities for continental-scale monitoring of animal movements. Rou-

tine local movements of individual animals between aerial and terrestrial habitats

are challenging to measure withWSR due to their closeness to the ground (typically

within the atmospheric surface layer, i.e., <100 m above ground level) and poten-

tial contamination from ground clutter. However, some animals initiate periodic
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and well-synchronized flights en masse that are comprehensively sampled by WSR

in a way that can be used for rigorous scientific research. Recent radar-observed

movements include seasonal migratory flights of insects (e.g., Westbrook et al.

2014) and birds (e.g., Buler and Dawson 2014), foraging flights of birds (e.g.,

Randall et al. 2011; Sieges et al. 2014), dispersal flights from communal roosts of

birds (e.g., Laughlin et al. 2014) and bats (e.g., Frick et al. 2012), and twilight

ascending flights by swifts (e.g., Dokter et al. 2013). WSR has provided novel

information about population dynamics (see Chap. 15) and the phenology of annual

life-cycle events (see Chap. 16) of flying animals that is not easily attainable by

other means. WSR operating at low tilt angles can also provide information about

where animals are concentrated or distributed in the terrestrial landscape by captur-

ing patterns of flying animals as they enter the airspace en masse (Diehl and Larkin
2005, also see Chap. 12).

The nature of how various animals move and congregate gives rise to two main

approaches for mapping their terrestrial distributions with WSR: (1) point mapping

of roosts and other concentrations of animals and (2) continuous-surface mapping

of animal distributions over broad geographic areas when initiating high-altitude

synchronized flights. The two approaches differ in their consideration of when to

sample animals aloft to accurately determine their on-ground locations and abun-

dance and how to validate radar data with ground observations. We focus this

chapter on discussing the application of these two approaches to mapping terrestrial

distributions of animals with WSR. We highlight a recently developed methodo-

logical approach that precisely and quantitatively links the horizontal spatial struc-

ture of birds aloft to their ground distributions. We then present several case studies

that improve our understanding of how anthropogenic modification of the terrestrial

landscape (e.g., urbanization, habitat management), natural geographic features,

and weather (e.g., hurricanes) can affect the terrestrial distributions of flying

animals. We close by identifying some issues that present challenges for the use

of WSR for mapping terrestrial distributions of flying animals and suggest areas for

future research.

2 Point Mapping of Terrestrial Concentrations of Flying
Animals

2.1 The Mapping Process

Roosts and some other animal concentrations are relatively easy to identify and

locate in radar data. Animals taking flight from roosts often appear on radar as

expanding rings or arcs emanating from a point source (Fig. 14.1) (Lack and Varley

1945; Elder 1957; Eastwood 1967). Roosting swallows, in particular, tend to leave

the roost en masse, flying upward to high altitudes before turning out in nearly all

directions, thus giving rise to these characteristic rings (Winkler 2006). Other

manifestations of animal roosts can also be seen on WSR. Bats exiting roosts can

take on a funnel shape, expanding outward as distance from the source increases
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(Horn and Kunz 2008). Congregations of waterfowl leaving a discrete wetland site

for migration appear as an irregularly shaped polygon growing laterally in size as

they move away from the source (O’Neal et al. 2010).

These patterns allow roost locations to be easily pinpointed and mapped. Early

radar studies typically involved visually analyzing “analog” photographs of radar

scans to pinpoint locations of roosts. Modern approaches to pinpointing roost

locations rely on georeferenced digital radar data and involve manually fitting a

circle around a roost ring or arc within a geographic information system and

calculating the geographic position of the circle center (Laughlin et al. 2013), or

Fig. 14.1 Composite of radar reflectivity scans from 6 WSR-88D sites depicting the morning

exodus flight of birds from 34 communal roosts on September 11, 2010, in the mid-Atlantic region

of the United States. Black dots denote center of roost rings and presumed location of roosts.

Reflectivity not attributed to bird roosts was removed for clarity
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more-sophisticated automated image analysis algorithms such as patch identifica-

tion (Horn and Kunz 2008) or a Hough transform (Larkin 2006) to recognize roosts

and calculate their centers.

Pinpointing the location of roosts by observing animals as they enter roosts is

sometimes difficult because of the disorganization and low altitude of aggregating

flights. Large-bodied martins (Progne spp.) often fly low to the ground and under

the radar beam or enter roosts as individuals or in small flocks over tens of minutes

as sunset approaches (Russell and Gauthreaux 1998, 1999). By contrast, smaller

swallows (Tachycineta bicolor, Stelgidopteryx spp.), as described by Winkler

(2006), “congregate a few hundred meters above the roost site, milling around the

site in an increasingly large and dense cloud of birds. Finally, as the last daylight

fades, a few courageous birds make the plunge downward into the reeds of the roost

site, followed immediately by a swirling stream of birds pouring into the vegetation,

with hundreds of thousands of birds settling in only a few minutes’ time.” Other

bird species may take as long as an hour or more to assemble at a location away

from the ultimate roost location. For example, Eastwood et al. (1962) observed that

roosting European starlings (Sturnus vulgaris) vary their pre-assembly location

(up to a mile from the roost location) and time on a daily basis. The flock then

moves from the pre-assembly location to the roost, occasionally circling the roost

once or twice before entering and finally settling. This activity appears on the radar

as a form of random variation in reflectivity or “effervescence” and can complicate

pinpointing of the ultimate roost location.

Sampling expanding radar rings of animals aloft as they exit roosts does not

require precise timing to accurately pinpoint roost locations. This is because

expanding rings will typically appear on several radar scans in succession as

animals expand out from their roost locations. This allows researchers either to

select an individual scan from the series of scans depicting roost rings or to integrate

information across the scans to pinpoint roost locations. For example, Laughlin

et al. (2013, 2014) used the center of the circle in the first scan in which the roost

was detected. Using a similar approach, Bridge et al. (2016) found that estimated

locations of purple martin (Progne subis) roosts from radar images occurred within

10 km of actual ground-truthed locations. Moreover, some animals leave roosts in a

succession of organized waves producing a sequence of expanding rings that appear

much like the ripples in water after a tossed stone breaks the surface. Successive

exodus waves increase the window of time for determining roost locations. For

example, emerging waves of European starlings produce upward of 18 rings from

the roost center at consistent average intervals of 3 min, with complete evacuation

of the roost taking at least 50 min (Eastwood et al. 1962). Brazilian free-tailed bats

(Tadarida brasiliensis) at peak colony size typically exit roosts in 2–4 waves

separated by 15–30 min intervals (Horn and Kunz 2008).

The temporal flexibility in sampling roost rings is important since the exact

timing of roost exodus, especially for bats, can be quite variable. The evening

exodus of bat colonies is one of the most easily and frequently studied aspects of bat

behavior (reviewed by Jones and Rydell 1994). The timing of bat emergence

appears to be primarily a function of diet and foraging strategy that balances
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predation risk and foraging time. Insectivorous bats that feed primarily on dipterans

(i.e., the majority of temperate bat species) emerge relatively early during the peak

flight activity of small insects about 20–40 min after sunset. However, emerging

before dark exposes insectivorous bats to greater predation risk from raptors and

possible competition from insectivorous birds. Bats that eat moths, flightless prey,

or plants typically leave later at around 40–70 min after sunset, thus reducing

predation risk (Jones and Rydell 1994). Roost exodus timing of bats also fluctuates

daily and seasonally with weather and food availability. In dry seasons in central

Texas when fewer insects likely exist, cave-dwelling bats emerged as early as 1.5 h

before sunset, risking predation to increase foraging time (Frick et al. 2012). In

contrast, during moist seasons bats emerged 30 min after sunset.

Variability in roost exodus timing is lower in birds than in bats. Russell and

Gauthreaux (1999) found that the onset of roost exodus for purple martins across

32 days ranged from 31 to 48 min before sunrise, with flights lasting 68� 12 min in

duration. The fine-scale variability in the timing of exodus was related to atmo-

spheric pressure and cloud cover, indicating that martins likely cued on daily

fluctuations in ambient light intensity when departing roosts (Harper 1959; Russell

and Gauthreaux 1999).

Complete rings are usually observed only when animals disperse away in all

directions at a consistent speed under no or light winds (<3 m/s). Under these

conditions, the center of a ring remains stationary over the roost location until

exodus flight is completed (Ligda 1958; Eastwood 1967). However, displacement

of complete rings downwind is sometimes observed under stronger winds (3–6 m/s)

without drift correction by animals (Eastwood 1967; Russell and Gauthreaux 1999).

With yet further increase in wind speed, radars observe arcs of animals that move

downwind, as opposed to complete rings. In these cases, arc formations are not

caused by an absence of animals in the upwind direction but rather from a tendency

for animals to fly into the wind at a lower altitude and thus remain undetected by the

radar. However, arcs may also be seen when animals show directionality in their

movement. For example, arcs are observed for some bird roosts located near water

bodies, since landbirds may avoid dispersing over water (Eastwood 1967). Arcs are

also observed when birds leave roosts to embark on directed migratory flights

(Harper 1959; Russell and Gauthreaux 1999). Horn and Kunz (2008) found that

surface winds do not appear to affect the initial direction or the speed at which

Brazilian free-tailed bats set out to forage. Rather, bats show directed flight toward

masses of emerging, dispersing, or migrating insects (Cleveland et al. 2006). In

situations where drifting rings or arcs are seen, a correction for wind velocity can be

applied (e.g., Eastwood et al. 1962) or the trajectory of the arc can be traced back to

its origin with an object-tracking algorithm (e.g., Horn and Kunz 2008). In other

studies, no correction is made for potential drifting of roost rings or arcs (e.g.,

Russell et al. 1998; Laughlin et al. 2013).

Identifying the species composition of animal roosts that appear on radar is

easily confirmed on the ground by placing observers at the center of the expanding

rings or arcs as animals leave roosts (e.g., Eastwood et al. 1962) or by matching the

center location of radar rings with already known roosts (e.g., Kelly et al. 2012).
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Alternatively, in one of the first studies to document observations of bat roosts on

radar, Williams et al. (1973) confirmed by helicopter that the reflectivity on airport

surveillance radars in Texas was caused by groups of Brazilian free-tailed bats

dispersing from caves to forage. O’Neal et al. (2010) used other remote-sensing

tools to identify the coarse taxonomic identity of individual waterfowl emanating

from a discrete wetland complex in Illinois for nocturnal migratory flight—a

thermal infrared camera to record animal shape and a portable stationary-beam

X-band radar to measure wing beat frequencies. The time of day or season when

roost rings appear on radar can also be used as a clue to the identity of animals

producing them. For example, purple martins roost communally from the end of

their breeding season until they depart for tropical wintering areas in late July and

August, while roosts of species that winter in temperate regions (e.g., tree swallow,

red-winged blackbird) are used for much longer (Winkler 2006). Foraging bats and

foraging or migrating waterfowl leave diurnal roosts in the evenings after sunset,

while diurnally active birds generally leave nocturnal roosts shortly before sunrise.

2.2 Ecological Insights

Communal roosting is often a regional phenomenon that involves broad spatial and

temporal relationships among roosts (Caccamise et al. 1983). However, early radar

studies of spatial and temporal dynamics of roosts were limited in scope to

providing “local”-scale information (e.g., Ligda 1958; Harper 1959; Eastwood

et al. 1962). For example, Eastwood et al. (1962) used a single radar in England

to study the dynamics of European starling roost locations over the course of

2 years. The lack of any distinctive topographic features in the landscape associated

with persistent ring centers led the researchers to suspect starlings as the source of

the rings, which was confirmed by observers on the ground. By monitoring roost

activity over time, they were able to determine there were upward of 12 persistent

roosts of resident starlings and several temporary roosts of migrating starlings. Of

particular note was a large persistent roost that was detectable within the center of

Trafalgar Square in London despite clutter radar echoes produced from surrounding

tall buildings. Eastwood et al. (1962) documented changes in the locations of

starling roosts in response to anthropogenic disturbance. For example, one roost

location changed after local farmers shot many individual starlings.

Most roost mapping studies in the United States have been conducted since the

establishment of the network of more than 150 WSR-88D stations and digital

archiving of radar data in the mid-1990s. The archived observations from these

networked radars have allowed for examination of roost location dynamics at a

sufficiently large scale to detect regional and seasonal patterns over many years,

which wasn’t possible in earlier radar studies.

2.2.1 Bat Roosting Ecology
The first observations of bat colonies on WSR-88D were made in Oklahoma and

Texas soon after the installation of the network (Ruthi 1994; McCracken and
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Westbrook 2002). By studying the dynamics and locations of maternity colonies of

Brazilian free-tailed bats for 11 years around a WSR-88D station in Texas, Horn

and Kunz (2008) provided new insight into bat roost dynamics. They found that

bats occupy bridge roosts more frequently than cave roosts early in the spring and

late in the fall despite the potential negative aspects of noise, air pollution, and

disturbance from humans. Concrete bridges with expansion joints may offer a

significant thermal advantage over caves during the cooler periods of the roosting

season by having warmer and more stable temperatures. Additionally, they

hypothesized that occupancy of bridges may relieve overcrowding in the limited

number of suitable roosting spaces in caves.

2.2.2 Bird Roosting Ecology
The first large-scale mapping of purple martin roosts in the United States, using

45 networked WSR-88D stations across 19 states, was conducted by Russell et al.

(1998). Roost sites were consistently detected if they were within 100 km of a radar

and occasionally up to 240 km from a radar, likely when the radar beam was being

strongly refracted. More recent studies use 175 km as a threshold distance for

detecting large swallow (Hirundinidae) roosts (Kelly et al. 2012; Laughlin et al.

2013). The detection range is limited in part by “range” bias (sensu Diehl and

Larkin 2005), which is caused by the increasing height of the radar beam above the

ground as it travels away from the radar. Orographic terrain relief can also impact

the range coverage of a radar and, thus, detecting roosts. Radar detection of animals

leaving roosts is also limited by their flight heights. For example, Russell and

Gauthreaux (1998) found that WSR-88D detected 80% of roost departures observed

during ground surveys at a purple martin roost located 28 km from the radar. Roost

exodus went undetected when rain obscured radar detection of birds (2 days), birds

flew just above the treetops because of fog or low cloud ceiling (4 days), or the radar

beam experienced extreme sub-refraction and passed above the birds (2 days).

The Russell et al. (1998) and Russell and Gauthreaux (1998) studies provided a

proof of concept that bird roosts over a large geographic area could be mapped

easily with minimal resources using the radar network. Most of the 33 identified

roosts were associated with areas of open water. Subsequently, more extensive

identification and ground validation of radar-observed roost locations, conducted

by volunteers of the Purple Martin Conservation Association, have documented

358 suspected martin roost sites within eastern North America (www.purplemartin.

org/research/19/project-martinroost/). Furthermore, the comprehensive study by

Bridge et al. (2016) evaluated habitat associations and persistence of 234 purple

martin roosts over most of their range. They found that martins actually use a

diverse array of roosting habitats including forest, cropland, and urban development

in addition to areas adjacent to open water. Moreover, martins appear to prefer

urban sites, and urban roosts were associated with the high year-to-year persistence.

Kelly et al. (2012) developed an approach that extends the use of WSR beyond

simple mapping of roost locations to automated monitoring of the phenology of

roost activity and relative sizes of the 358 roosts identified by the Purple Martin

Conservation Association. They used the daily maximum radar reflectivity value
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recorded within the hour before sunrise within a 9-km2 grid centered at each roost

location as an index of the number of individuals within a roost (i.e., roost size).

They found that roosts farther away from a radar station do not appear as consis-

tently as those closer in and that roost size was negatively related to distance from

the radar. Furthermore, Laughlin et al. (2014) found that variability in precision of

swallow roost locations was positively related to distance from the radar. These

studies highlight that range bias in detection, location, and size estimation of roosts

remains a challenge that needs to be addressed for future quantitative studies,

especially for those that seek to directly compare point locations across the radar

domain.

Phenology of roosts has provided insight into the stopover and overwintering

habitat use of tree swallows (Tachycineta bicolor) too. Laughlin et al. (2013)

integrated WSR-88D observations with telemetry of individually marked birds to

study stopover habitat use in southeastern Louisiana by several breeding

populations of tree swallows from across North America. Numbers of tree swallows

in sugarcane roosts decreased as harvest of sugarcane commenced. Large roosts of

>1 million birds decreased to the tens of thousands near the end of harvest. It

appears that the sugarcane fields are used as autumn stopover habitat for swallows,

and wetland areas are used as overwintering habitat for the few birds that remain.

More recently, Laughlin et al. (2016) found strong correlations between radar-

estimated and eBird-estimated occupancy dynamics of tree swallow roosts. The

long-term occupancy dynamics based on radar data provided evidence that

Louisiana acts as a combined stopover and overwintering region, whereas Florida

occupancy dynamics were akin to a traditional winter region.

Radar observations have revealed that over much of their migratory and winter-

ing ranges, swallow roost sites in general appear to have fairly consistent spacing

(Winkler 2006). Roost sites in eastern North America tend to be about 100–150 km

apart. Based on these observations, Winkler (2006) proposed a series of testable

questions about swallow migration strategies and roost-site dynamics. For example,

given that roost spacing is within the range of a day’s flight, he hypothesized that

birds migrating through the day could easily reach the next roost site in the

successive chain of nocturnal roosts. He predicted the mechanism for individuals

to find roosts along the chain could be for experienced birds to recall a navigational

map of previously used sites (i.e., roost fidelity) and/or for individuals to simply

forage in the preferred migratory direction and then be recruited to the next roost by

aggregating near the end of the day with other birds that used that roost the previous

night (i.e., conspecific attraction). Understanding the mechanisms of roost selection

could illuminate why certain sites are consistently used from year to year while

others are more ephemeral in nature. These mechanisms may also inform the causes

of the intra- and interannual changes in roost sizes.

In a related study, Laughlin et al. (2014) examined tree swallow roost dynamics

during fall migration. They observed roosts forming in the same places each night,

which indicated a fairly high level of individual roost fidelity. However, radio-

marked individuals switched between roosts at a rate of at least 22% each night and

showed some attraction to conspecifics going toward other roosts. Thus, the pattern
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of tree swallow roosting dynamics seems largely explained by individuals

exhibiting a combination of moderately high roost-site fidelity coupled with mod-

erate conspecific attraction.

2.2.3 Stopover Ecology of Waterfowl Congregations
O’Neal et al. (2010) developed a rigorous approach to use WSR to identify and

enumerate the ducks emigrating from a 12,000 ha wetland stopover complex in

central Illinois over the course of a fall migration season. This approach entailed

determining an average radar cross section for an individual duck and summing the

total reflectivity of the discrete patch of reflectivity (i.e., flock of birds) emanating

from the wetland complex on a nightly basis. The system was unique in that the

reflectivity of the emanating flock of birds did not mix with reflectivity from other

sources and could be confidently attributed to the “point” ground source.

In a subsequent study, O’Neal et al. (2012) used WSR data in combination with

data from weekly aerial censuses to estimate an average seasonal stopover duration

for fall-migrating dabbling ducks across eight seasons. Their rather elegantly

simple approach entailed dividing the total numbers of emigrants leaving the

complex over the course of a migration season by the total duck-use days for the

season determined via the aerial surveys. The quotient of the two measures provides

an estimate of stopover duration in units of days. The mean seasonal stopover

duration was 28 days (range 11–48 days), which is identical to a 28-day estimate for

mallards (Bellrose and Crompton 1970) and consistent with a 21-day estimate for

all dabbling duck species (Bellrose et al. 1979). Furthermore, O’Neal et al. (2012)

found a positive relationship between seasonal stopover duration with a seasonal

index of foraging habitat quality. Thus, migrating ducks appear to assess local

stopover site conditions and adjust the amount of time they stop over accordingly.

The wide flexibility in stopover duration that they observed is consistent with the

hypothesis that ducks allocate their time adaptively among individual stopovers

(Harper 1982), although the extent to which this flexibility reflects interindividual

adaptation (e.g., Harper 1982) or adaptive stopover (e.g., Weber et al. 1999;

Beekman et al. 2002; McLaren et al. 2013) is untested.

3 Continuous-Surface Mapping of Terrestrial Distributions
of Broadly Dispersed Animals

The advent of digital measurement and recording of radar reflectivity by WSR

networks in the United States (Crum et al. 1993) and Europe (Holleman et al.

2008) allows for more quantitative treatment of reflectivity and, combined with

modern geographic information systems, the ability to summarize and map continu-

ous surfaces of bioscatter over space and time within radar domains (Gauthreaux

et al. 2003). Surface mapping of the terrestrial distributions of flying animals with

WSR is a technically challenging and novel application that requires animals to be

sampled immediately upon entering the radar-swept airspace before they have

dispersed far from their ground sources (Diehl and Larkin 2005). Because animals
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of interest typically are much closer to the ground than the precipitation that theWSR

networks were designed to sample, there are often large gaps in the network where

flying animals cannot be detected (Fig. 14.2). Thus, unlike precipitation data, WSR

networks don’t provide comprehensive continuous coverage of bioscatter across the

entire network. In fact, Buler and Dawson (2014) estimated that only about one-third

of the land area in the northeastern United States is robustly sampled by WSR for

surface mapping of animal distributions. To date, continuous surface mapping has

only been conducted using the United States’ WSR-88D network to sample bird

distributions at the onset of nocturnal migratory flights (e.g., Bonter et al. 2009; Buler

and Moore 2011; Ruth et al. 2012; Buler and Dawson 2014) and nocturnal feeding

Fig. 14.2 Composite of radar reflectivity scans from 6 WSR-88D sites depicting the evening

onset of migratory flights of birds on September 10, 2010, in the mid-Atlantic region of the United

States. Areas of greater reflectivity (dBZ) coincide with areas of greater bird density
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flights of waterfowl (e.g., Buler et al. 2012b; Sieges et al. 2014). The remainder of

this chapter will therefore focus on continuous-surface mapping of bird distributions.

However, most aspects of mapping bird distributions are applicable to mapping

terrestrial distributions of other flying animals. Mapping ground distributions of

emerging migrating insects or bats may be possible when either taxa is dominant

within the airspace, but such attempts have not yet been made.

3.1 The Mapping Process

Sampling terrestrial distributions of birds with WSR is generally done with a single

near-instantaneous radar scan for a given night at the lowest elevation sweep as birds

leave their terrestrial habitats near the initial onset of well-synchronized en masse
flights (Buler and Diehl 2009). This approach helps to preserve the geographic

fidelity and structure in animal distributions (Buler et al. 2012b). Widely distributed

birds appear as sudden “blooms” of reflectivity centered around radars as they take

flight and enter radar-sampled airspace (Fig. 14.2). At an early stage of the onset of

flight, bird reflectivity measures throughout the radar domain can vary by orders of

magnitude, with greater values coinciding with habitats that contained more birds.

Within minutes, as the initial birds continue to gain altitude and disperse away from

their point of departure, the bloom of reflectivity expands and reflectivity measures

become more homogeneous. Migrating landbirds and foraging flights of waterfowl

continue to emerge from terrestrial habitats for at least 30 min (Hebrard 1971;

Åkesson et al. 1996; Buler et al. 2012b; Wingo and Knupp 2014). Gauthreaux and

Belser (2003) used multiple radar scans over a time period of 20–50 min during the

onset of bird migration on a given night to map generalized stopover areas of high

relative bird density. In contrast, continuous-surface mapping requires more precise

timing for the selection of a single radar scan. How the accuracy and precision of

radar data for mapping ground distributions decline through time has not been

empirically evaluated for migrating landbirds, but for feeding flights of waterfowl,

it appears to peak about 10 min after the initiation of flight (Buler et al. 2012b).

As with point mapping, continuous-surface mapping by sampling birds aloft as

they descend into terrestrial habitats may be nearly impossible because the descent

is generally not synchronized. Gauthreaux (1971) described the behavior of small

flocks of migrating landbirds as they arrived on the northern coast of the Gulf of

Mexico following an 18–24 h over-water flight. He wrote that “as a flock high aloft

moved over a coastal woodland some of the individuals hesitated, hovered, or flew

in broad, shallow spirals while the remaining flock members continued farther

inland. The individuals that left the flock then closed their wings and dove nearly

straight down.” From a radar perspective, birds that remain aloft would continue to

produce radar echoes and largely obscure the activity of individual birds making

landfall. The radar echoes disappear only when the last birds descend into terrestrial

habitats. Subsequently, in the only published study to examine landfall patterns,

Gauthreaux (1975) observed that migrating birds disappeared from radar scans at

forests 46–140 km inland from the coastline even when flying into adverse weather.
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His study helped explain the scarcity of migratory birds within the coastal plain of

Louisiana (i.e., coastal hiatus; Lowery 1945). Additionally, flocks of wintering

waterfowl have been anecdotally observed to terminate their nocturnal feeding

flights at flooded rice fields in the Central Valley of California (Buler et al.

2012b). However, only limited qualitative inferences can be made about terrestrial

habitat use based on monitoring the termination of bird flights on radar.

More generally, there are several sources of measurement bias related to how

radars sample the air and the flight behavior of animals that should be addressed to

maximize accuracy in mapping animal density on the ground (Diehl and Larkin

2005). We highlight recently developed and increasingly sophisticated methodo-

logical approaches that minimize several of these biases and other data quality

control issues to produce continuous-surface maps (Fig. 14.3) that precisely and

quantitatively link the horizontal spatial structure of birds aloft to their terrestrial

distributions.

3.1.1 Range Bias
Perhaps the biggest source of measurement bias is caused by the increase in altitude

of the radar beam above the earth’s surface with increasing range from the radar

(Fig. 14.4). This leads to a systematic decline in reflectivity values with increasing

range when sampling animals close to the ground. This range bias precludes direct

comparison of raw reflectivity measures across ranges. Furthermore, the bottom of

the radar beam eventually passes completely over animals in the airspace (i.e.,

beam overshoot) and will record no reflectivity even when animals are present in

the airspace. Although dependent on the heights of animals in the air, the refractive

conditions of the atmosphere, and the elevation angle of the radar beam, beam

overshoot from WSR-88D occurs on average at ~80 km from the radar when

sampling birds at exodus in relatively flat terrain at the lowest elevation angle

(Buler and Diehl 2009; Buler et al. 2012b). The very narrow beam at ranges closest

to the radar combined with relatively sparse densities of animals aloft creates

greater uncertainty in reflectivity measures that justify filtering data close to the

radar (Chilson et al. 2012).

In the absence of range bias correction, researchers generally limit comparisons of

terrestrial habitat use to a subset of data at similar ranges. For example, Bonter et al.

(2009) compared a few selected locations of high bird density paired with areas of

low density at the same distance from the radar to characterize land covers and

landscape contexts corresponding to high-use areas by migrating landbirds in the

Great Lakes region. Thus, they effectively reduced continuous-surface data into

coarse point location data (i.e., 5-km radius areas). However, they acknowledged

they were unable to analyze radar data at a finer scale, which is key for informing

conservation efforts on a site-by-site basis. As an alternative approach to limit the

effect of range bias, Ruth et al. (2012) maintained continuous-surface data but

restricted their analysis of land cover and migrant stopover density in the southwest-

ern United States to a 15-km band ranging from 35 to 50 km away from a radar.

While this restriction was severe, they were still able to document differences in bird

densities among a variety of land cover types by analyzing data from several radars.
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Range bias can be minimized by adjusting radar reflectivity measures from

individual radar sample volumes (the basic radar sampling unit, measuring 250 m

in range by 0.5� in diameter) into equivalent reflectivity measures with respect to a

common height reference across all sample volumes [i.e., vertically integrated

reflectivity (VIR)]. Essentially two pieces of information are needed for this: the

height limits of the radar beam for every sample volume and the mean vertical

profile of reflectivity (VPR) of animals aloft at the time of sampling. Established

methods for determining radar beam limits include estimating where the beam is

Fig. 14.3 Composite of bias-adjusted vertically integrated reflectivity scans from 6 WSR-88D

sites depicting the evening onset of migratory flights of birds on September 10, 2010, in the

mid-Atlantic region of the United States following Buler and Dawson (2014). Areas of greater

reflectivity (cm2/ha) coincide with areas of greater bird density
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blocked by topography using digital elevation models (Bech et al. 2003) and

modeling beam propagation paths assuming a standard atmosphere (i.e., simple)

or using a piecewise linear model of the refractive-index gradient constructed from

ancillary radiosonde observations (i.e., complex) (Doviak and Zrnic 1993). The

VPR is a function that describes the ratio of the reflectivity at a given height interval

with respect to a reference, generally the average reflectivity from the ground to the

highest beam height considered. Buler and Diehl (2009) developed an algorithm to

derive a high-resolution (i.e., at 10-m height intervals) mean apparent VPR by

integrating radar data from the five lowest elevation angle sweeps near the radar.

The quotient of the observed reflectivity and the beam-area-weighted mean VPR

ratio sampled within a given sample volume gives the estimated VIR that can be

compared directly across the radar domain. VIR in volumetric units of cm2 per km3

can be “flattened” to the ground by multiplying it by the reference height range

measured in kilometers to derive a surface bioscatter estimate in units of cm2 per

km2. The accuracy of VIR estimates relies on developing fine resolution beam

propagation models and VPRs since animals occupy only a few hundred meters of

airspace when sampled near the onset of flight. For example, using a high-resolution

refractive index from radiosonde observations to model beam propagation can help

improve the correlation between the VIR of birds aloft and their ground densities

(Buler and Diehl 2009).

Range bias also gives rise to the need for considering effective detection range

and deciding how to censor unreliable radar data. Unfortunately, the effective

Fig. 14.4 Example illustration of declining radar reflectivity with increasing range measured

within the limits of a 3-dB radar beam propagating in a standard atmosphere at 0.5� elevation (gray
region bounded by narrow black lines) for a homogeneous layer of birds across ranges. The bird

layer extends from the ground to 500 m above ground and is presented as the gradient-filled box to

depict increasing bird density closer to the ground. The radar beam completely overshoots the bird

layer starting at around 82 km range, which coincides with measured reflectivity of zero despite

birds in the air
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detection range of the radar is highly dynamic within and among radar scans due to

variability in local topography, the vertical distribution of animals aloft, atmo-

spheric refraction of the radar beam, and attenuation of the radar signal, which can

impact the minimal detectable density of birds. Thresholds can be set to censor data

based on the extent of beam overshoot or the magnitude of the VPR-based adjust-

ment factor (e.g., where the radar beam passes over 90% of birds in the airspace or

there is a >20-fold increase in observed reflectivity; Buler and Dawson 2014). The

variable detection limits also create a scenario of multiply censored data that can

introduce error when deriving summary statistics among radar scans. This error has

been minimized (e.g., Buler et al. 2012b; Buler and Dawson 2014) by using the

semiparametric robust linear regression on order statistics (ROS) method for

estimating summary statistics of multiply censored data (Lee and Helsel 2005).

3.1.2 Ground Clutter and Beam Blockage
Areas of persistent ground clutter contamination or partial radar beam blockage from

human infrastructure or topography need to be identified to avoid mistaking strong

clutter echoes as flying animals or blocked areas as being devoid of animals. These

masking maps are an important component of data quality control and are easily

created by summarizing the detection probabilities of reflectivity from thousands of

scans over long time periods (Kucera et al. 2004). Masking maps help augment the

inherent dynamic clutter suppression algorithms of WSR as well. Partial beam

blockage from topographic relief can also be modeled (Bech et al. 2003). Radars in

areas of wide relief may have extensive beam blockage, which can reduce the

efficacy of some radars for mapping terrestrial distributions of flying animals.

Moreover, these radars may also be prone to violating assumptions of homogeneous

VPRs throughout the radar domain and, consequently, “overcorrection” of range bias

algorithms and thus may warrant special considerations (e.g., Ruth et al. 2012).

3.1.3 Sun Angle Bias and Exodus Timing
En masse initiations of animal flight are often closely synchronized to the elevation

of the sun. These include migratory flights of landbirds (Gauthreaux 1971; Hebrard

1971; Åkesson et al. 1996), waterfowl (O’Neal et al. 2010), and insects (Westbrook

2008; Westbrook et al. 2014) and feeding flights of wintering waterfowl (Raveling

et al. 1972; Baldassarre and Bolen 1984; Ely 1992; Cox and Afton 1996; Randall

et al. 2011; Buler et al. 2012b). Many of these flights occur under the cover of

darkness and begin shortly after sunset near the end of civil twilight when atmo-

spheric conditions are stable, multiple environmental cues are optimally available

for flying animals, and visual predators are thwarted. For example, the magnitude

and variability in horizontal and vertical winds reach their minimum about 20 min

after sunset (Wingo and Knupp 2014). Additionally, important navigational cues

from the sun’s position on the horizon, skylight polarization, and astronomical cues

are only all available at the end of civil twilight (Kerlinger and Moore 1989;

Åkesson et al. 1996). In particular, the skylight polarization pattern during twilight

is stable, intense, and closely aligned along the north–south axis (Cronin et al.

2006), which provides important directional information for migrating birds
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(Moore and Phillips 1988; Able 1989; Helbig and Wiltschko 1989; Helbig 1990;

Muheim et al. 2007; Muheim 2011).

Mapping terrestrial distributions of birds among multiple radars typically

involves careful selection of individual radar scans at similar sun angles or timing

in relation to the onset of migration (Bonter et al. 2009; Buler and Moore 2011;

Ruth et al. 2012). However, small differences among radars in the exact sampling

timing of radar scans with respect to relative sun angle can introduce bias in

reflectivity measures (Buler and Diehl 2009). These small differences in timing

can arise due to the lack of synchronization of radars to the onset of bird flights and

the relatively coarse sampling rate of WSR-88D (i.e., one scan per 4–10 min)

during the sudden onset of bird flight when the number of birds aloft can double

every few minutes (Hebrard 1971;Åkesson et al. 1996). Furthermore, there is about

an 8-min time differential in sun elevation along an east–west axis across the radar

domain at mid-latitudes. Thus, there is potential for significant sun angle bias even

within a single radar domain.

As an example, we measured the onset of autumn nocturnal migration flight of

birds at the KLIX radar in Slidell, Louisiana, USA, during 13 nights. We divided

the radar domain within 50–60 km of the radar into 18 7-km-wide longitudinal

bands. For each night, we fit a logistic growth curve within each band through the

mean reflectivities from a series of radar scans during the onset of migration

(Fig. 14.5) and extracted the time of the inflection point of the “exodus” curve.

We then used the slope of the linear regression between inflection point time

(dependent variable) and longitude (independent variable) to derive the speed at

which the inflection point of exodus curves moves to the west for each night. The

mean observed speed of inflection points of flight exodus curves (21.2 + 4.7 km/

min) was not different (T ¼ �1.76, df ¼ 12, P ¼ 0.9) from that of the predicted

speed of the sunset terminator (23.6 km/min).

Fig. 14.5 (a) Example “exodus curve” at the onset of bird migration within a single 7-km wide

longitude band to derive the inflection point of peak change in mean reflectivity (red dot) among

radar scans (bars). (b) This inflection point was combined with similarly derived inflection points

from other longitude bins within the same radar domain (black dots) in a linear regression model to

determine the speed of the onset of migration for a given night
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Approaches have been developed to reduce sun angle bias both within and among

radars. These approaches involve interpolating reflectivity measures to a static

relative time point with respect to sun elevation at every sample volume across all

sampling nights and radars (Buler et al. 2012b; Buler and Dawson 2014). However,

using a static sun angle for all nights and radars may still introduce bias because there

is variability in the onset of flights between nights within and among radars. For

example, Gauthreaux (1971) found a 15-min range in timing of the onset of nocturnal

bird migration across nights relative to sunset at a single radar. Thus, a new approach

further reduces sun angle bias; it dynamically samples at the sun angle at the peak

rate of change in reflectivity during exodus (i.e., when the greatest numbers of birds

depart) for each night and radar (McLaren et al. 2018).

Visual observations and radio telemetry of individual birds show that peak

exodus times occur close to those observed by nearby radar (Gauthreaux 1971;

Hebrard 1971; Åkesson et al. 1996). However, mean peak exodus was earlier on

radar compared to that of radio-marked Swainson’s thrushes (Catharus ustulatus)
using data from two separate studies with overlapping study areas in coastal

Alabama, USA (Fig. 14.6). While exhibiting similar duration of flight exodus,

results from Smolinsky et al. (2013) indicate that the peak exodus time of migrating

thrushes in autumn (sun angle ¼ �9.0�) was about 9 min after the mean peak

exodus time of bird-dominated flights on the nearby Mobile, Alabama radar (sun

angle ¼ �7.0�; Buler and Moore 2011). Others have found that departures of the

earliest cohort of Swainson’s thrush are also largely restricted to the period of
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Fig. 14.6 Modeled logistic growth curves relative to sun angle depicting (1) the cumulative

portion of 37 radio-marked Swainson’s thrushes (black dots) aloft at the onset of nocturnal flights

during autumnmigration at Fort Morgan, Alabama 2008 and 2009 (black line), and (2) the increase

in mean reflectivity among 12 autumn nights during 2002 and 2003 around the KMOB (Mobile,

Alabama) radar (gray line). Vertical dashed lines indicate where the inflection point of fitted curve

lines occurs. Sun angle is �6� at the end of civil twilight. Data from Smolinsky et al. (2013) and

Buler and Moore (2011)
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nautical twilight (sun angle between �6� and �12�) (Cochran 1987; Mills et al.

2011). Additionally, mean peak radar departure in spring from Gauthreaux’s (1971)

study in coastal Louisiana, USA, was at �9�, matching that of thrushes from

Smolinsky et al. (2013). Admittedly, the data from this two-study comparison

were from different seasons and years. This may highlight the possibility of annual

variability in mean departure times. It also highlights the fact that individual species

are known to vary in their departure timing; other species exhibit earlier departure

than Swainson’s thrush (Åkesson et al. 1996, 2001). It is also possible that other

biota (e.g., insects) may contribute to the early exodus reflectivity around the end of

civil twilight (Westbrook 2008).

3.1.4 Displacement and Dispersion
Dispersion of birds throughout the radar domain is evident over time and can affect

the spatial accuracy and precision of the georeferenced data. Wintering waterfowl

tend to disperse heterogeneously in multiple directions when initiating feeding

flights. An effective correction for this spreading behavior of waterfowl during

feeding flights is currently elusive. Estimates of median dispersal distances of birds

from their ground sources over time closely match the optimal bandwidth for kernel

smoothing of ground waterfowl densities and the scale at which radar data are

spatially autocorrelated (Buler et al. 2012b). Consequently, dispersal leads to

increased loss of spatial structure in reflectivity scans and to autocorrelation of

reflectivity measures at greater distances. It also leads to a slight weakening of the

association between waterfowl density aloft and observed waterfowl density on the

ground. Despite autocorrelation in reflectivity measures out to about 4 km at the

optimal sampling time, finer-scale associations of birds with their ground sources

can still be discerned when summarizing data across multiple sampling nights,

particularly where discrete patches of suitable habitat within an unsuitable habitat

matrix are sampled by multiple radar sample volumes.

In contrast, migrating landbirds leave their stopover sites in a relatively uniform

mean speed and direction, so adjusting for their displacement is possible although

difficult to implement (Buler and Diehl 2009). Even after adjusting for displacement,

the strength of associations between the reflectivity of birds aloft and the dominant

habitats of their ground sources does not always improve, likely due to uncertainty in

details of estimating the extent of displacement. However, adjusting for displacement

may improve associations with coastal habitats and with small habitat patches or

narrow, linear habitats like riparian corridors. This is because birds may take off from

one habitat type and be detected above another. Associations of birds from habitat

patches or sites that are smaller than the physical dimensions of a single radar sample

volume are likely not possible due to mixing from birds emanating from other

locations within the sample volume (Buler et al. 2012b). Moreover, determining

terrestrial habitat associations at far ranges from the radar may be less reliable

because the radar beam passes farther above the earth’s surface, increasing the

displacement of animals from their ground source in the time it takes for them to

fly up into the beam (Diehl and Larkin 2005). This possibility served as a rationale for
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trimming data at far ranges for Ruth et al. (2012), yet remains to be empirically

tested.

3.1.5 Taxonomic Identification
Identification of flying animals observed byWSR remains a key challenge, even for

coarse taxonomic discrimination of birds from insects and bats. This is true for all

radar studies of animals aloft, not just when mapping their terrestrial distributions.

During spring and autumn migratory seasons, birds, insects, and bats likely overlap

in their flight activity (Cryan 2003; Fleming and Eby 2003; Gauthreaux and

Livingston 2006; Alerstam et al. 2011; Larkin and Diehl 2012). Thus, WSR sample

volumes can contain multiple taxa since they are large enough to contain tens to

thousands of individual animals. Accordingly, species discrimination on WSR is

not absolute but focuses instead on determining the classes of animals that dominate

the airspace within the radar domain. Insects are typically discriminated from

vertebrates by their slower horizontal airspeeds (Larkin 1991). Radar measures of

the radial velocity of animals during the peak of flight activity (typically about 3 h

after sunset) are used to characterize dominant taxa aloft for a given sampling day

(e.g., Gauthreaux and Belser 1998; Ruth et al. 2012; Buler and Dawson 2014).

3.2 Ecological Insights

3.2.1 Understanding How Migrating Birds Contend with Crossing
Ecological Barriers and Extreme Weather Events

Long-distance, intercontinental migratory birds must negotiate ecological barriers

during their biannual journeys, and movement in relation to the Gulf of Mexico

(GOM) is a highly conspicuous feature of the Nearctic–Neotropical bird migration

system. Habitats along the northern coast of the GOM provide the last possible

stopover before migrants make a nonstop flight of greater than 1000 km in fall, and

the first possible landfall for birds returning north in spring, so migrant–habitat

relations are critical when birds negotiate this geographical barrier (e.g., Kerlinger

and Moore 1989; Moore et al. 1990; Deppe et al. 2015).

Radar mapping of migratory stopover distributions of birds along the northern

GOM has provided valuable insight into how birds negotiate ecological barriers. In

particular, the broad scale of radar observations has helped to reveal the interplay

between extrinsic factors (e.g., weather and energetic condition) and finer-scale

intrinsic factors (e.g., food) on stopover habitat selection, which may be especially

acute along large ecological barriers (Gauthreaux 1975; Gauthreaux and Belser

1999; Gauthreaux et al. 2005; Buler and Moore 2011; LaFleur et al. 2016).

The most extensive continuous-surface mapping effort of spring bird stopover

densities to date spans the northern GOM from Texas to Florida within 100 km of

the coastline and incorporates 4 years of radar data (LaFleur et al. 2016). Most of

the spatial variability in bird density is related to longitude, proximity to the coast,

and the amount of hardwood forest cover in the landscape. At the broadest scale,

winds and weather over the GOM have likely shaped the evolution of migration
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routes in this region (Able 1972; Moore and Kerlinger 1989; Moore et al. 1990;

Rappole and Ramos 1994; Gauthreaux et al. 2005; Kranstauber et al. 2015).

Accordingly, LaFleur et al. (2016) found exceptionally high bird densities in

western Louisiana consistent with the existence of a trans-Gulf route fromMexico’s

Yucatan Peninsula that was identified from radar analysis of flight activity

(Gauthreaux et al. 2005) and observed bird movements from telemetry studies

(Callo et al. 2013; Stanley et al. 2015). However, annual variability revealed that

this region does not always support the highest densities of migrants. In some years,

the eastern panhandle of Florida had the greatest densities of migrants, suggesting a

largely overlooked eastern trans-Gulf route also consistent with telemetry studies

(Fraser et al. 2013; Stanley et al. 2015) and the influence of winds in shaping broad-

scale distributions of migrants crossing the GOM (Gauthreaux et al. 2005; Russell

2005).

Trans-Gulf migrants typically overfly coastal marshes to stop over in forested

landscapes (Gauthreaux 1971, 1975; Gauthreaux and Belser 1998) or stop in

forested landscapes at the immediate coastline when wide coastal marshes are

absent (Buler and Moore 2011). However, high migrant densities at the immediate

coast at some longitudes regardless of land cover type (LaFleur et al. 2016) and

weakening of the relationship between migrant density and forest cover closer to

the coastline (Buler and Moore 2011) provide evidence that some migrants are

limited in their ability to select among habitats of different quality or are forced to

land at the first dry ground they encounter. These constraints are likely the result of

physiological stress (Moore et al. 1990; Kuenzi and Moore 1991; Spengler et al.

1995) or adverse weather experienced while aloft (Lowery 1945; Gauthreaux

1971).

The GOM is also a region that experiences some of the most severe weather

events in the form of hurricanes that often coincide with the autumn migration

season of landbirds and can impact their stopover distributions. For example,

Hurricane Katrina caused extensive damage to bottomland hardwood forests within

the Lower Pearl River Basin (Chambers et al. 2007; Chapman et al. 2008; Wang

and Xu 2009) that migrants preferentially use at high densities during stopover

(Buler and Moore 2011). Barrow et al. (2007) compared maps of bird stopover

density around a single radar immediately after the storm to composite maps from

previous years near the path of the hurricane. They found migrating birds stopping

over in the region for several weeks after Katrina’s passage increased their use of

less-disturbed, upland pine forests near the damaged bottomlands. About 5 weeks

after the hurricane struck, much of the surviving forest canopy in the Pearl River

bottomlands began to grow new foliage and migrant use of these forested wetlands

mostly returned to pre-Katrina levels. Thus, radar observations can reveal the

flexibility of migrating birds for responding to acute, short-term, and broad-scale

disturbance to stopover habitats. This unique ability of networked radars is possible

given the comprehensive, broad-scale extent of radar coverage and their constant

surveillance operation. These radar data can improve our understanding of the

effects of hurricane events on the population dynamics of migrating birds and a

macrosystem-scale understanding of the potential scope and importance of
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eco-evolutionary processes in the face of climate change (sensu Heffernan et al.

2014).

3.2.2 Identifying Important Stopover Areas and Habitat Use Patterns
of Birds Along Their Migration Routes

In an analysis of autumn stopover densities of migrants in the northeastern United

States, Buler and Dawson (2014) summarized reflectivity measures for each sample

volume from 16 WSR-88Ds across nights and years (2008, 2009) to estimate the

seasonal mean and coefficient of variation of daily bird stopover density. Using

these metrics, they classified areas with the highest mean and lowest variability in

reflectivity as the most important bird stopover use areas within the sampling ranges

of individual radars (locally) and across all radars (regionally). Locally important

areas generally were associated with deciduous forests within landscapes

dominated by developed or agricultural lands, or near the shores of major water

bodies. These results are consistent with those of Bonter et al. (2009), who analyzed

data collected during spring migration by six WSR-88Ds in the Great Lakes basin.

Large regionally important stopover areas were located along the north shore of

Long Island Sound (Connecticut, New York), on the Delmarva Peninsula (Dela-

ware, Maryland), near Baltimore and Washington, DC (Maryland, Virginia), along

the western edge of the Adirondack Mountains (New York), and within the

Appalachian Mountains (southwestern Virginia, West Virginia) (Buler and Dawson

2014).

Concentrations of migrants near coastlines are consistently found where stop-

over distributions have been mapped with radar (Bonter et al. 2009; Buler and

Moore 2011; Buler and Dawson 2014; LaFleur et al. 2016). However, the avail-

ability of high-quality stopover habitats for birds is at odds with rapid human

population growth in coastal regions (Crossett et al. 2004; Buler and Moore

2011). Anthropogenic disturbances and habitat loss likely limit birds’ use of coastal

habitats and exacerbate other constraints on habitat use by migrants in coastal areas

(Buler and Moore 2011). Thus, the conservation of coastal stopover sites is of high

priority for protection of migratory bird populations (Mehlman et al. 2005).

Radar mapping studies have also revealed high-density use of forests in human-

dominated landscapes, particularly urban parks within large cities (Bonter et al.

2009; Buler and Dawson 2014). Migrant stopover use of human-dominated

landscapes has also been documented by large-scale citizen-science survey efforts

in the United States (La Sorte et al. 2014b). Urban forests can provide resources for

migrants to refuel during their stopovers (Seewagen and Slayton 2008). Forest

patches may be particularly sought after by migrants who find themselves in

human-dominated landscapes; the strongest positive relationships between bird

stopover density and forest cover occurred in areas, like cities, with low amounts

of forest cover in the landscape (Buler and Dawson 2014). Moreover, bird density

was positively related to the amount of human development in the landscape near

large cities. Thus, large cities actually had relatively greater bird densities within

them after accounting for the amount of forest cover and other factors shaping

migrant distributions. This supports the hypothesis that migrating birds may
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actually be attracted to large urban areas at a landscape scale. A possible mecha-

nism could be phototaxis of migrants to the artificial light glow of big cities

(Gauthreaux and Belser 2006), which has also been cited as a possible explanation

for altitudinal shifts in migrants during flight (Bowlin et al. 2015).

Ruth et al. (2012) analyzed data from seven WSR-88Ds spanning the US–

Mexico border to examine stopover habitat use patterns of migratory birds moving

through the arid southwestern United States. Migrating birds are known to use

riparian habitats in the Southwest (Carlisle et al. 2009), but the intervening arid

habitats have received little study. Ruth et al. (2012) documented relatively low

migrant densities in arid scrub/shrub habitats across the region. However, the

dominance of this habitat type suggests that, collectively, scrub/shrub supports a

large number of migratory birds during stopover and that the importance of a given

habitat is more than a function of density alone.

Although radar-based maps of important stopover areas do not characterize their

intrinsic qualities or ecological function, they can focus conservation actions on

areas and habitats where they likely will benefit the largest numbers of migrants,

regardless of how or why birds use them, and ensure that a network of suitable

stopover sites are protected along migration routes (Hutto 2000; Mehlman et al.

2005; Faaborg et al. 2010). As such, they can provide direct input to local or

regional conservation plans.

3.2.3 Assess Waterfowl Response to Wetland Habitat Management
and Restoration

Radar observations of waterfowl distributions at landscape and regional scales have

had important implications for waterfowl conservation and management planning.

Buler et al. (2012a) used 13 years of radar data to quantify wintering waterfowl

response to restored wetlands in California’s Central Valley by sampling birds at

the onset of evening feeding flights. Two radars provided data for approximately

57% of the land area enrolled in the United States Department of Agriculture’s

(USDA)Wetland Reserve Program (WRP). They found that daytime (i.e., roosting)

use of WRP wetlands by wintering waterfowl increased dramatically after wetland

restoration and was sustained for up to 8 years post-restoration. Variability in the

magnitude of waterfowl densities after restoration was greater with greater density

of birds in the local area before restoration, lower amount of surrounding wetland

habitat within a 1.5 km radius, greater increase in site soil wetness (i.e., flooding)

after restoration, and closer proximity to flooded rice fields that serve as important

feeding grounds. The study corroborated the understanding that the juxtaposition of

diurnal roosts and nocturnal feeding habitats is critical to effectively conserve and

manage landscapes for wintering waterfowl (Haig et al. 1998; Stafford et al. 2010).

In addition to providing evidence of the value of restored wetlands, Buler et al.

(2012a) used WSR observations to document a long-term shift in habitat use by

waterfowl. Within the Central Valley, diurnal use of flooded rice fields by water-

fowl nearly tripled over time from 1995 to 2007 relative to use of natural wetland

habitats. Waterfowl use of flooded rice fields relative to use of natural wetlands was
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also greater during wetter winters. This corroborated a long-term radio-telemetry

study that found similar shifts in habitat use by waterfowl (Fleskes et al. 2005).

In response to the Deepwater Horizon oil spill in summer 2010, the USDA

implemented the Migratory Bird Habitat Initiative (MBHI) to provide temporary

wetland habitat via managed flooding of agricultural lands for migrating and

wintering waterfowl, shorebirds, and other birds along the northern GOM. Sieges

et al. (2014) used WSR observations to show that birds responded positively to

MBHI management by exhibiting greater relative bird densities within sites relative

to prior years when no management was implemented and also concurrently

relative to non-flooded agricultural lands. Like waterfowl in California, the magni-

tude of bird densities in managed wetlands was related to the surrounding landscape

context. WSR observations provided strong evidence that MBHI sites offered birds

wetland habitat inland from coastal wetlands impacted by the oil spill.

3.3 The Future

We highlight many of the issues of mapping terrestrial distributions of animals with

radar that continue to pose future challenges and opportunities for improving

aeroecological studies. These issues are either subjects of ongoing research efforts

or are of great importance for advancing quantification of animal distributions using

radar. We are hopeful that improved data quality control and processing techniques

will continue to unleash the full research potential of WSR to advance our under-

standing of aeroecology in the future.

The natural history of some insects presents the opportunity to map the

distributions of insects initiating flights. Many migratory insects initiate migratory

flights around dusk in well-synchronized flights similar to birds (Reynolds and Riley

1979; Riley and Reynolds 1979; Riley et al. 1983). In fact, insect activity is often a

source of contamination for efforts to map migrating bird distributions. Some aquatic

insects, like many short-lived adult mayflies, emerge in high concentrations from

aquatic habitats in well-synchronized crepuscular flights (Brittain 1982), which are

readily detected by WSR. For example, in 1999, emerging mayflies of the genus

Hexagenia were observed with WSR along the shores of Lake Erie after a 30-year

absence due to hypoxia resulting from cultural eutrophication (Masteller and Obert

2000). There is interest in monitoring mayfly distributions and population dynamics

in the face of anthropogenic alterations of water quality and other habitat threats (e.g.,

Fremling 1973; Corkum 2010). However, despite the fact that emergence flights are

very distinct in nature and finite in duration, we could find no studies that have

developed techniques to map distributions of aquatic insect emergence flights or

terrestrial insect migratory flights. Thus, future studies are needed that merge radar

observations with traditional insect survey techniques to map and monitor population

distribution and dynamics of insects.

Further study is needed to comprehensively describe broad-scale flight initiation

timing patterns among and within radars and to determine the factors that explain

variability in exodus timing such as geographic position, weather, or species
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composition (Åkesson et al. 2001). For example, the impact of cloud cover on flight

initiation is not consistent. While Cochran et al. (1967) found that several North

American thrush species depart later at night under cloudy skies, Gauthreaux

(1971) and Hebrard (1971) did not find that cloud cover delayed exodus among

the collection of all migrating landbirds.

Another important assumption that needs future consideration is whether the

terrestrial distribution derived from the first cohort of animals to initiate nightly

flights is representative of the broader population of animals of interest. Automated

tracking networks have documented that the first-departing migrants tend to move

long distances in the direction of their ultimate migratory destination, while later-

departing individuals may engage in short-distance relocation flights, sometimes in

directions away from their ultimate migratory destination and may be in poorer

energetic condition (Mills et al. 2011; Taylor et al. 2011; Schmaljohann and Naef-

Daenzer 2011; Smolinsky et al. 2013). If first flyers are biased toward birds in good

energetic condition prepared for making a long duration flight, they may bias the

densities of birds emanating from high-quality habitats or along main flyways.

Future field work can test this assumption, and improved telemetry technology

should continue to provide new insights into the exact flight timing and behavior of

individual animals (Bridge et al. 2011).

Flying animals reflect radio energy in extremely complex ways (Edwards and

Houghton 1959; P. Chilson, unpub. data) that continue to challenge efforts to

quantify migrant density using radar. No progress has been made in confirming

the existence of or correcting for bias in reflectivity measures due to the aspect of

animals (i.e., their shape and exposure with respect to the radar) when quantifying

animal densities aloft since Diehl and Larkin (2005) first broached the subject.

Considerably more research in this area is needed to better understand both the

effects of aspect on radar reflectivity and the impact of this inherent uncertainty on

quantification.

The expansion and integration of terrestrial distribution maps of migrating birds

from WSR data with large-scale field mapping efforts from eBird data (Fink et al.

2010) may help link seasonal changes in stopover habitat distributions with known

compositional changes in migratory bird taxa (La Sorte et al. 2014a, b). Such efforts

to merge eBird and radar data have not yet been attempted in earnest but hold

promise to disentangle the aggregate density information provided by radar. Broad-

scale efforts to integrate ground surveys of bird-use days with radar-derived

estimates of emigrant densities could be a cost-effective approach to get an index

of stopover duration across multiple sites (sensu O’Neal et al. 2012) and broaden

our understanding of the stopover ecology of migrating birds.
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