31 research outputs found

    Geographic separation and genetic differentiation of populations are not coupled with niche differentiation in threatened Kaiser's spotted newt (Neurergus kaiseri)

    Get PDF
    The combination of niche modelling and landscape genetics (genomics) helps to disentangle processes that have shaped population structure in the evolutionary past and presence of species. Herein, we integrate a comprehensive genomic dataset with ecological parameters and niche modelling for the threatened Kaiser's newt, a newt species adapted to mountain spring-ponds in Iran. Genomic analysis suggests the existence of two highly differentiated clades North and South of the Dez River. Genetic variation between the two clades (76.62%) was much greater than within clades (16.25%), suggesting that the Dez River prevented gene flow. River disconnectivity, followed by geographic distance, contributed mostly to genetic differentiation between populations. Environmental niche and landscape resistance had no significant influence. Though a significant difference between climatic niches occupied by each clade at the landscape-scale, habitat niches at the local-scale were equivalent. 'Niche similarity analysis' supported niche conservatism between the two clades despite the southward shift in the climatic niche of the Southern clade. Accordingly, populations of different clades may occupy different climatic niches within their ancestral niche. Our results indicate that the change of climatic conditions of geographically and genetically separated populations does not necessarily result in the shift of an ecological niche

    Phylogeny and species delimitation of near Eastern Neurergus newts (Salamandridae) based on genome-wide RADseq data analysis

    Get PDF
    We reconstruct the molecular phylogeny of Near Eastern mountain brook newts of the genus Neurergus (family Salamandridae) based on newly determined RADseq data, and compare the outcomes of concatenation-based phylogenetic reconstruction with species-tree inference. Furthermore, we test the current taxonomy of Neurergus (with four species: Neurergus strauchii, N. crocatus, N. kaiseri, and N. derjugini) against coalescent-based species-delimitation approaches of our genome-wide genetic data set. While the position of N. strauchii as sister species to all other Neurergus species was consistent in all of our analyses, the phylogenetic relationships between the three remaining species changed depending on the applied method. The concatenation approach, as well as quartet-based species-tree inference, supported a topology with N. kaiseri as the closest relative to N. derjugini, while full-coalescent species-tree inference approaches supported N. crocatus as sister species of N. derjugini. Investigating the individual signal of gene trees highlighted an extensive variation among gene histories, most likely resulting from incomplete lineage sorting. Coalescent-based species-delimitation models suggest that the current taxonomy might underestimate the species richness within Neurergus and supports seven species. Based on the current sampling, our analysis suggests that N. strauchii, N. derjugini and N. kaiseri might each be subdivided into further species. However, as amphibian species are known to be composed of deep conspecific lineages that do not always warrant species status, these results need to be cautiously interpreted in an integrative taxonomic framework. We hypothesize that the rather shallow divergences detected within N. kaiseri and N. derjugini likely reflect an ongoing speciation process and thus require further investigation. On the contrary, the much deeper genetic divergence found between the two morphologically and geographically differentiated subspecies of N. strauchii leads us to propose that N. s. barani should be considered a distinct species, Neurergus barani Öz, 1994

    An integrative taxonomic revision and redefinition of Gephyromantis (Laurentomantis) malagasius based on archival DNA analysis reveals four new mantellid frog species from Madagascar

    Get PDF
    The subgenus Laurentomantis in the genus Gephyromantis contains some of the least known amphibian species of Madagascar. The six currently valid nominal species are rainforest frogs known from few individuals, hampering a full understanding of the species diversity of the clade. We assembled data on specimens collected during field surveys over the past 30 years and integrated analysis of mitochondrial and nuclear-encoded genes of 88 individuals, a comprehensive bioacoustic analysis, and morphological comparisons to delimit a minimum of nine species-level lineages in the subgenus. To clarify the identity of the species Gephyromantis malagasius, we applied a target-enrichment approach to a sample of the 110 year-old holotype of Microphryne malagasia Methuen and Hewitt, 1913 to assign this specimen to a lineage based on a mitochondrial DNA barcode. The holotype clustered unambiguously with specimens previously named G. ventrimaculatus. Consequently we propose to consider Trachymantis malagasia ventrimaculatus Angel, 1935 as a junior synonym of Gephyromantis malagasius. Due to this redefinition of G. malagasius, no scientific name is available for any of the four deep lineages of frogs previously subsumed under this name, all characterized by red color ventrally on the hindlimbs. These are here formally named as Gephyromantis fiharimpe sp. nov., G. matsilo sp. nov., G. oelkrugi sp. nov., and G. portonae sp. nov. The new species are distinguishable from each other by genetic divergences of >4% uncorrected pairwise distance in a fragment of the 16S rRNA marker and a combination of morphological and bioacoustic characters. Gephyromantis fiharimpe and G. matsilo occur, respectively, at mid-elevations and lower elevations along a wide stretch of Madagascar’s eastern rainforest band, while G. oelkrugi and G. portonae appear to be more range-restricted in parts of Madagascar’s North East and Northern Central East regions. Open taxonomic questions surround G. horridus, to which we here assign specimens from Montagne d’Ambre and the type locality Nosy Be; and G. ranjomavo, which contains genetically divergent populations from Marojejy, Tsaratanana, and Ampotsidy.info:eu-repo/semantics/publishedVersio

    Introgression Underlies Phylogenetic Uncertainty But Not Parallel Plumage Evolution in a Recent Songbird Radiation

    No full text
    Instances of parallel phenotypic evolution offer great opportunities to understand the evolutionary processes underlying phenotypic changes. However, confirming parallel phenotypic evolution and studying its causes requires a robust phylogenetic framework. One such example is the “black-and-white wagtails,” a group of 5 species in the songbird genus Motacilla: 1 species, Motacilla alba, shows wide intra-specific plumage variation, while the 4r others form 2 pairs of very similar-looking species (M. aguimp + M. samveasnae and M. grandis + M. maderaspatensis, respectively). However, the 2 species in each of these pairs were not recovered as sisters in previous phylogenetic inferences. Their relationships varied depending on the markers used, suggesting that gene tree heterogeneity might have hampered accurate phylogenetic inference. Here, we use whole genome resequencing data to explore the phylogenetic relationships within this group, with a special emphasis on characterizing the extent of gene tree heterogeneity and its underlying causes. We first used multispecies coalescent methods to generate a “complete evidence” phylogenetic hypothesis based on genome-wide variants, while accounting for incomplete lineage sorting (ILS) and introgression. We then investigated the variation in phylogenetic signal across the genome to quantify the extent of discordance across genomic regions and test its underlying causes. We found that wagtail genomes are mosaics of regions supporting variable genealogies, because of ILS and inter-specific introgression. The most common topology across the genome, supporting M. alba and M. aguimp as sister species, appears to be influenced by ancient introgression. Additionally, we inferred another ancient introgression event, between M. alba and M. grandis. By combining results from multiple analyses, we propose a phylogenetic network for the black-and-white wagtails that confirms that similar phenotypes evolved in non-sister lineages, supporting parallel plumage evolution. Furthermore, the inferred reticulations do not connect species with similar plumage coloration, suggesting that introgression does not underlie parallel plumage evolution in this group. Our results demonstrate the importance of investing genome-wide patterns of gene tree heterogeneity to help understand the mechanisms underlying phenotypic evolution. [Gene tree heterogeneity; incomplete lineage sorting; introgression; parallel evolution; phylogenomics; plumage evolution; wagtails.

    Data from: Introgression underlies phylogenetic uncertainty but not parallel plumage evolution in a recent songbird radiation

    No full text
    <p class="MsoNormal"><span>Instances of parallel phenotypic evolution offer great opportunities to understand the evolutionary processes underlying phenotypic changes. However, confirming parallel phenotypic evolution and studying its causes requires a robust phylogenetic framework. One such example is the "black-and-white wagtails", a group of five species in the songbird genus </span><em><span>Motacilla</span></em><span>: one species, the White Wagtail (</span><em><span>M. alba</span></em><span>), shows wide intra-specific plumage variation, while the four others form two pairs of very similar-looking species (African Pied Wagtail </span><em><span>M. aguimp </span></em><span>+ Mekong Wagtail </span><em><span>M. samveasnae</span></em><span><em><span> </span></em>and Japanese Wagtail </span><em><span>M. grandis</span></em><span><em><span> </span></em>+ White-browed Wagtail </span><em><span>M. maderaspatensis</span></em><span>, respectively). However, the two species in each of these pairs were not recovered as sisters in previous phylogenetic inferences. Their relationships varied depending on the markers used, suggesting that gene tree heterogeneity might have hampered accurate phylogenetic inference. Here, we use whole genome resequencing data to explore the phylogenetic relationships within this group, with a special emphasis on characterizing the extent of gene tree heterogeneity and its underlying causes. We first used multispecies coalescent methods to generate a "complete evidence" phylogenetic hypothesis based on genome-wide variants, while accounting for incomplete lineage sorting and introgression. We then investigated the variation in phylogenetic signal across the genome, to quantify the extent of discordance across genomic regions, and test its underlying causes. We found that wagtail genomes are mosaics of regions supporting variable genealogies, because of ILS and inter-specific introgression. The most common topology across the genome, supporting </span><em><span>M. alba</span></em><span> and </span><em><span>M. aguimp</span></em><span> as sister species, appears to be influenced by ancient introgression. Additionally, we inferred another ancient introgression event, between </span><em><span>M. alba</span></em><span> and </span><em><span>M. grandis</span></em><span>. By combining results from multiple analyses, we propose a phylogenetic network for the black-and-white wagtails that confirms that similar phenotypes evolved in non-sister lineages, supporting parallel plumage evolution. Furthermore, the inferred reticulations do not connect species with similar plumage coloration, suggesting that introgression does not underlie parallel plumage evolution in this group. Our results demonstrate the importance of investigation of genome-wide patterns of gene tree heterogeneity to help understanding the mechanisms underlying phenotypic evolution.</span></p><p>Funding provided by: Vetenskapsrådet<br>Crossref Funder Registry ID: http://dx.doi.org/10.13039/501100004359<br>Award Number: 2015-04402</p><p>Funding provided by: Vetenskapsrådet<br>Crossref Funder Registry ID: http://dx.doi.org/10.13039/501100004359<br>Award Number: 2019-04486</p><p>Funding provided by: Vetenskapsrådet<br>Crossref Funder Registry ID: http://dx.doi.org/10.13039/501100004359<br>Award Number: 2017-02907</p><p>Funding provided by: Knut och Alice Wallenbergs Stiftelse<br>Crossref Funder Registry ID: http://dx.doi.org/10.13039/501100004063<br>Award Number: KAW 2016.0361</p><p>Funding provided by: Second Tibetan Plateau Scientific Expedition and Research (STEP)*<br>Crossref Funder Registry ID: <br>Award Number: 2019QZKK0304-02</p&gt

    Integrative taxonomy reveals unrecognised species diversity in African <i>Corypha</i> larks (Aves: Alaudidae)

    Get PDF
    The species complex comprising the rufous-naped lark Corypha africana, Sharpe’s lark Corypha sharpii, the red-winged lark Corypha hypermetra, the Somali long-billed lark Corypha somalica and Ash’s lark Corypha ashi encompasses 31 recognised taxa across sub-Saharan Africa, many of which are extremely poorly known and some not observed for decades. Only 17 taxa have been studied molecularly and none comprehensively for morphology, vocalisations or other behaviours. Here, we undertake comprehensive integrative taxonomic analyses based on plumage and morphometrics (for 97% of the taxa), mitochondrial and nuclear loci (77%), ≤ 1.3 million genome-wide single nucleotide polymorphisms (68%), song (many described for the first time; 52%) and additional behavioural data (45%). All polytypic species as presently circumscribed are paraphyletic, with eight primary clades separated by ≤ 6.3–6.8 Myr, broadly supported by plumage, morphometrics, song and other behaviours. The most recent divergences concern sympatric taxon pairs usually treated as separate species, whereas the divergence of all clades including C. africana subspecies is as old as sister species pairs in other lark genera. We propose the recognition of nine instead of five species, while C. ashi is synonymised with C. somalica rochei as C. s. ashi. The geographical distributions are incompletely known, and although the nine species are generally para-/allopatric, some might be sympatric.</p

    Combining RADseq and contact zone analysis to decipher cryptic diversification in reptiles: Insights from the Spiny‐footed Lizard (Reptilia, Lacertidae)

    No full text
    International audienceUncertainties on species taxonomy and distribution are major factors hampering efficient conservation planning in the current context of biodiversity erosion, even concerning widespread and abundant species in relatively well‐studied regions. Species delimitation have long been based on phylogenetic analyses of a small number of standard markers, but accurate lineage identification through this approach can be hampered by incomplete lineage sorting, introgression or isolation by distance. In that context, analyses of introgression patterns at secondary contact zones offer an interesting alternative by allowing a direct estimation of reproductive isolation, especially when using genome‐wide markers. Here, we investigated a contact zone between two genetic groups of the Spiny‐footed Lizard Acanthodactylus erythrurus (Schinz, 1833) in Morocco, whose status as separate lineages remained disputed in previous multilocus studies. Based on thousands of genome‐wide markers obtained through a RADseq approach, we confirmed that they represent distinct evolutionary lineages. Furthermore, the transition at their contact zone was very steep, with spatially restricted gene flow, highlighting levels of reproductive isolation consistent with species‐level lineages. Our study further illustrates the power of RADseq‐based studies of contact zones to understand cryptic diversity in non‐model organisms

    'Barcode fishing' for archival DNA from historical type material overcomes taxonomic hurdles, enabling the description of a new frog species

    No full text
    Taxonomic progress is often hindered by intrinsic factors, such as morphologically cryptic species that require a broad suite of methods to distinguish, and extrinsic factors, such as uncertainties in the allocation of scientific names to species. These uncertainties can be due to a wide variety of factors, including old and poorly preserved type specimens (which contain only heavily degraded DNA or have lost important diagnostic characters), inappropriately chosen type specimens (e.g. juveniles without diagnostic characters) or poorly documented type specimens (with unprecise, incorrect, or missing locality data). Thanks to modern sequencing technologies it is now possible to overcome many such extrinsic factors by sequencing DNA from name-bearing type specimens of uncertain assignment and assigning these to known genetic lineages. Here, we apply this approach to frogs of the Mantidactylus ambreensis complex, which was recently shown to consist of two genetic lineages supported by concordant differentiation in mitochondrial and nuclear genes. These lineages co-occur on the Montagne dʼAmbre Massif in northern Madagascar but appear to have diverged in allopatry. We use a recently published bait set based on three mitochondrial markers from all known Malagasy frog lineages to capture DNA sequences from the 127-year-old holotype of Mantidactylus ambreensis Mocquard, 1895. With the obtained sequences we are able to assign the name M. ambreensis to the lowland lineage, which is rather widespread in the rainforests of northern Madagascar, leaving the microendemic high-elevation lineage on Montagne d’Ambre in north Madagascar in need of description. We describe this species as Mantidactylus ambony sp. nov., differing from M. ambreensis in call parameters and a smaller body size. Thus, using target enrichment to obtain DNA sequence data from this old specimen, we were able to resolve the extrinsic (nomenclatural) hindrances to taxonomic resolution of this complex. We discuss the broad-scale versatility of this ‘barcode fishing’ approach, which can draw on the enormous success of global DNA barcoding initiatives to quickly and efficiently assign type specimens to lineages

    Systematics of the avian family Alaudidae using multilocus and genomic data

    Get PDF
    The family Alaudidae, larks, comprises 93–100 species (depending on taxonomy) that are widely distributed across Africa and Eurasia, with single species extending their ranges to North and northernmost South America and Australia. A decade-old molecular phylogeny, comprising ∼80% of the species, revealed multiple cases of parallel evolution and large variation in rates of morphological evolution, which had misled taxonomists into creating many non-monophyletic genera. Here, we reconstruct the phylogeny of the larks, using a dataset covering one mitochondrial and 16 nuclear loci and comprising all except one of the currently recognised species as well as several recently proposed new species (in total 133 taxa; not all loci available for all species). We provide additional support using genome-wide markers to infer a genus-level phylogeny based on near-complete generic sampling (in total 51 samples of 44 taxa across 40 species). Our results confirm the previous findings of rampant morphological convergence and divergence, and reveal new cases of paraphyletic genera. We propose a new subfamily classification, and also that the genus Mirafra is divided into four genera to produce a more balanced generic classification of the Alaudidae. Our study supports recently proposed species splits as well as some recent lumps, while also questioning some of the latter. This comprehensive phylogeny will form an important basis for future studies, such as comparative studies of lark natural history, ecology, evolution and conservation
    corecore