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Geographic separation and 
genetic differentiation of 
populations are not coupled 
with niche differentiation in 
threatened Kaiser’s spotted newt 
(Neurergus kaiseri)
Forough Goudarzi1,2, Mahmoud-Reza Hemami1, Loïs Rancilhac2, Mansoureh Malekian1, 
Sima Fakheran1, Kathryn R. Elmer   3 & Sebastian Steinfartz2,4

The combination of niche modelling and landscape genetics (genomics) helps to disentangle processes 
that have shaped population structure in the evolutionary past and presence of species. Herein, we 
integrate a comprehensive genomic dataset with ecological parameters and niche modelling for the 
threatened Kaiser’s newt, a newt species adapted to mountain spring-ponds in Iran. Genomic analysis 
suggests the existence of two highly differentiated clades North and South of the Dez River. Genetic 
variation between the two clades (76.62%) was much greater than within clades (16.25%), suggesting 
that the Dez River prevented gene flow. River disconnectivity, followed by geographic distance, 
contributed mostly to genetic differentiation between populations. Environmental niche and landscape 
resistance had no significant influence. Though a significant difference between climatic niches occupied 
by each clade at the landscape-scale, habitat niches at the local-scale were equivalent. ‘Niche similarity 
analysis’ supported niche conservatism between the two clades despite the southward shift in the 
climatic niche of the Southern clade. Accordingly, populations of different clades may occupy different 
climatic niches within their ancestral niche. Our results indicate that the change of climatic conditions 
of geographically and genetically separated populations does not necessarily result in the shift of an 
ecological niche.

Landscape characteristics influence functional connectivity of habitats and therefore affect migration and gene 
flow of individuals among populations1. These characteristics can be biotic or abiotic, natural or anthropo-
genic, making several combinations possible, such as abiotic-anthropogenic (roads and modified topography), 
biotic-anthropogenic (agriculture), natural-abiotic (water resources distribution) and finally natural-biotic (com-
munity composition)2. Landscape factors affecting the level of genetic differentiation among populations can be 
summarised as ‘geographic distance’, ‘landscape resistance’ and ‘environmental resistance3.

Isolation by distance (IBD) is the correlation between the genetic distance of individuals or populations com-
pared to their geographic distance4. As in a heterogeneous environment, gene flow may be limited such that 
straight-line geographic distances may actually not represent the real geographic distances underlying observed 
genetic distance5. Accordingly, species that require specific habitat conditions may not disperse or migrate directly 
to a new suitable habitat patch; instead, landscape characteristics may promote or resist individual migration. 
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Amphibians are typically associated with wet or humid habitat patches that are interrupted by non-suitable hab-
itat patches. For instance, dry lands can act as movement barriers for salamanders6, though gene flow some-
times occurs through matrix habitats temporarily turned into suitable habitat7. Therefore, functional connectivity 
describes the amount of genetic variation explained by landscape resistance, the pattern underlain by isolation 
by resistance (IBR)8. In addition, the balance between gene flow and selection in populations that occupy dif-
ferent environments determines the population genetic differentiation9,10. In such circumstances, adaptation to 
local environmental conditions will diminish the establishment success of migrants and effective gene flow will 
decrease. Such local adaptations lead to a pattern of isolation by environment (IBE). Isolation by environment 
examines the effect of environmental niche dissimilarity causing genetic differentiation11.

Genetic divergence at the intraspecific level is mainly the result of limited gene flow among allopatric popula-
tions or lineages. If these lineages also use different components of the environmental space, this differentiation 
will result in a ‘niche divergence’ pattern12. In contrast, closely related lineages may tend to retain their ancestral 
niche-related traits over time (phylogenetic niche conservatism; PNC13). An intermediate pattern between these 
two extremes would be ‘niche constraint’ (sensu Pyron, et al.14) in which two lineages segregate in environmental 
analogues of their ancestral niche14. Taking either of these evolutionary paths depends on many factors, including 
the degree of geographic and environmental heterogeneity, the lineage’s genetic predisposition, and timescale14. 
PNC assists in forecasting species geographic responses to changes in large scale environmental conditions that 
might be relevant to climate change (e.g. temperature and precipitation). Under global climate change conditions, 
species with conserved climatic niches might be driven to extinction if they are not able to adapt to changing 
conditions, e.g. by shifting their range15. To retain the ancestral climatic niche in a changing environment, pop-
ulations may need to shift their geographical range; a task that may be difficult or impossible in heterogeneous 
landscapes. Especially for amphibians, which are in general characterised for limited dispersal propensity (but 
see16), lineages with strongly conserved niche may remain isolated in suitable habitat patches or are at risk of 
extirpation if they cannot migrate.

Members of the genus Neurergus are found in the Near East and form a monophyletic clade of newts within 
the family of Salamandridae that have adapted to a mountainous habitat reproducing primarily in streams17–19. 
Up to five species are  currently recognized20–22, among those the distribution of Neurergus kaiseri (Kaiser’s newt) 
extends to Iran, where which is the most southern distribution range of the genus and all Salamandridae in 
Eurasia. According to the IUCN red list assessment, N. kaiseri is classified as vulnerable23; it is restricted to springs 
in the southern Zagros Mountains of Iran. Across its geographical range, populations of N. kaiseri are facing 
a heterogeneous mountainous landscape with diverse climatic conditions ranging from wet to dry that is dis-
connected by two main rivers, Dez and Karoon. This is in contrast to the remaining more northerly distributed 
species (N. strauchii, N. crocatus, N. barrani and N. derjugini), which occupy more homogenous mountainous 
habitats and reproduce in streams. As a result of its southern distribution and the lack of consistent water supply 
of available streams, Kaiser’s newt is the only spring-pond-breeding species of the genus. In general, N. kai-
seri can be characterised as a spring-pond-breeding lineage of newts that occupies suitable habitat patches in a 
rather heterogeneous environmental setting with limited migration between suitable patches. A first insight on 
the structure of N. kaiseri populations based on the mitochondrial D-loop indicated the existence of two clades, 
with their divergence best explained by geographic distance24. However, the structure inferred from a single locus 
such as the mtDNA can substantially differ from a multi-locus approach of genomic DNA, which is reflecting 
more accurately the true history of populations and at higher resolution. Thus, in order to obtain a more complete 
understanding of both genetic structure and the underlying processes shaping it, the analysis of an extensive 
multi-locus dataset for N. kaiseri is crucial to inform future conservation measures.

We sampled thousands of loci across the nuclear genome by applying Restriction Associated DNA sequenc-
ing (RADseq). This dataset was then used to perform a comprehensive population structure analysis, which is 
the basis to address the question in how far landscape characteristics have shaped and impacted the observed 
population structure. We hypothesised that geographic distance (IBD) and environmental niche dissimilarity 
(IBE) acting as an adaptation barrier, and that landscape resistance (IBR) and barriers such as rivers (isolation by 
river, IBRiv) would limit gene flow among populations of N. kaiseri. Specifically we explored (1) to what extent 
N. kaiseri clades kept the same climatic tolerance after separation, (2) whether niche divergence/conservatism 
accelerates adaptation and diversification within this species, and (3) which ecological factors cause the species 
niche to be conserved at coarse and fine scales14.

Results
RADseq dataset.  Using de novo assembly on reads obtained from a ddRAD protocol (modified from25), we 
recovered a total of 26,746 loci of an average length of 115 bp (total of 3,080,681 bp), each of them being present in 
at least 28 individuals of N. kaiseri from 16 localities (Fig. 1). From these loci, 18,649 SNPs were identified, and all 
individuals were genotyped at these sites. When including outgroups (one individual of both N. crocatus and N. 
derjugini) to perform phylogenetic analyses, 23,518 loci were recovered for a total of 2,709,284 bp.

Population genetic structure.  Using a Maximum Likelihood approach on concatenated RAD loci (com-
plete sequences) from the dataset with outgroups, we recovered a tree that is resolved for the majority of nodes 
(Fig. 2). This tree shows a structure within N. kaiseri that is consistent with the previous study on a segment of the 
mitochondrial DNA24, populations are split into two monophyletic groups, which are geographically separated by 
the Dez River (Fig. 1). While the Southern group is rather homogeneous, the Northern one displays strong genetic 
diversity, and can be further separated in 4 monophyletic groups of populations: Tova, Bozorg-Ab + Vojenab, 
Shahbazan and a larger group that ranges from Barik-Ab in the South to Kerser in the North (thereafter referred 
to as ‘core Northern populations’).
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In line with the phylogenetic tree, a fineStructure analysis recovered two groups corresponding to the popu-
lations North and South of the Dez River (Fig. 3A). Higher co-ancestry levels were found for pairs of individuals 
from the same clade. While the co-ancestry among individuals from the Southern clade is very high, individuals 
from the Northern clade show hierarchical levels of genetic structure reflecting the lineages recovered on the 
phylogenetic tree. The levels of co-ancestry between individuals from the Southern and Northern clades gradu-
ally increase when getting closer to the Dez River, with the individuals from Tova sharing more ancestry with the 
Southern clade’s individuals than with those from the ‘core Northern populations’.

The Northern and Southern clades were also very distinct on the first axis of the PCA (accounting for 36.5% of 
the variance; Fig. 3B) with no intermediate individuals between them. Still, the populations of Tova, Bozorg-Ab, 
Vojenab and Barik-Ab are slightly closer to the Southern clade. On the other hand, both groups are not differenti-
ated on the 2nd and 3rd axis (accounting for respectively 11.3% and 7.0% of the variance), which can be attributed 
to the intra-clade differentiation. The variation at these axes confirms that the Southern clade is very homogene-
ous, while the Northern clade shows a structure in line with the previous analyses.

Factors affecting genetic differentiation.  An AMOVA analysis of the complete dataset revealed that 
factors such as the sampling location and the clade were explaining significant amount of genetic variation among 
populations (p = 0.01 for both). The variation between clades accounted for 76.62%, while the variation between 
populations within the clades accounted for 16.25%. When performing the AMOVA only on individuals of the 
Southern clade, geographic location North or South of the Karoon River was significantly correlated with genetic 
differentiation (p = 0.01) explaining 45.24% of the total variance.

Mantel tests revealed a significant relationship between genetic distance and log-transformed geographic dis-
tance (isolation by distance) (Table 1). ‘Isolation by resistance’, and ‘isolation by river’ significantly influenced 
pairwise population genetic differentiation as genetic distance significantly increased with increasing pairwise 
landscape resistance. In ‘cumulative map of currents’, high-flow areas represent possible pathway of dispersal 
(Fig. 4A–C). Mantel test detected a signal of isolation by environment as climate dissimilarity had significant 
influence on genetic distance. Each of four variables in isolation had a significant effect on genetic differentiation 
and then included in the multivariate model.

To test correlations between site-by-site genetic distance matrix and its predictive factors, we used Generalised 
Dissimilarity Modelling (GDM). The fitted GDM explained 74% of genetic differentiation between populations. 
Visual examination of the genetic distances predicted from the model versus the observed values indicated that 
the model had reasonable predictive power (Fig. 5A). The GDM showed a positive strong non-linear relation-
ship between genetic distance and river disconnectivity (Fig. 5B), meaning rivers explain 66% of genetic devi-
ance and the remaining 8% deviance is caused by geographic distance (Table 1). As outlined by Fig. 5C, genetic 

Figure 1.  Map of the sampling localities of Neuregus kaiseri across the southwestern Zagros Mountains, Iran, 
with the sampling size indicated between parentheses. The two major rivers of the area are also indicated. The 
maps were generated in ArcGIS 10.4 using the base map from ©OpenStreetMap contributors (https://www.
openstreetmap.org), available under ODbL (www.openstreetmap.org/copyright).
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differentiation increases sharply with geographic distance up to 50 km and remains stable beyond. In contrast, 
environmental dissimilarity and landscape resistance had no important effects on observed genetic variation 
(Fig. 5D,E and Table 1).

Figure 2.  Phylogenetic tree of Neuregus kaiseri native to southwestern Zagros Mountains in Iran based on the 
concatenation of 23,518 RAD loci (2,709,284 bp), with N. crocatus and N. derjugini as outgroups.

Figure 3.  (A) Co-ancestry matrix of populations of Neurergus kaiseri native to southwestern Zagros Mountains 
in Iran inferred with fineRADstructure, represented as a heatmap. (B) Representation of the first two axes of 
the PCA, with individuals coloured depending on the clade they belong to. For each clade, an inertia ellipse 
containing 67% of the individuals is represented.
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Phylogenetic niche conservatism.  At the local habitat scale, PCA-env indicated that 46% of the environ-
mental variation was explained by the first two PCs. There was no significant difference between occupied niches 
of the two genetically differentiated clades at this scale. The occupied climatic niches by the two clades were sta-
tistically equivalent (p = 0.79) and similarity of them was significantly more than expected by chance (p = 0.02). 
Accordingly, niche conservatism hypothesis could not be rejected at the local scale (Fig. 6A, 1–6).

The first two components of PCA-env explained 68.59% of the total variation along climatic gradients 
(PC1 = 44.71%, PC2 = 23.88%). The Northern clade is rather restricted at both dimensions of the climatic space, 
while the Southern clade covers a wide climatic niche along both PC1 and PC2 (Fig. 6B, 1–3). In agreement with 
the relatively low value of the Schoener’s D metric (D = 0.04), equivalency test illustrated that the two clades 
occupied statistically non-equivalent climatic spaces (p value = 0.002) (Fig. 6B, 4). The observed low niche simi-
larity of the Northern clade compared to the Southern clade is significantly not different by chance and vice versa 
(Fig. 6B, 5,6). PCA-env equivalency/similarity tests revealed that the occupied climatic niches by the two clades 
were not identical but had some similarities. It seems that the ancestral niche centroid of N. kaiseri has shifted 
towards areas that are warmer (1 °C on average) and receive more precipitation. The random translocation and 
rotation (RTR) test showed no significant signal of niche conservatism nor divergence at climatic space since the 
observed Multidimensional niche overlap (MO) was in the 95% of the null distribution (MO = 0.18; p = 0.73) 
(Supplementary Fig. S1).

Variables Source Mantel r (p) Importance in GDM (p)

Geographic distance (IBD) Geographical position 0.67 (0.00) 8.38 (0.00)

Landscape resistance (IBR) Circuitscape output 0.59 (0.04) 0.00 (0.75)

River disconnectivity (IBRiv) Circuitscape output 0.81 (0.00) 34.97 (0.00)

Environmental dissimilarity (IBE) Bioclim data set 0.38 (0.00) 0.00 (0.73)

Table 1.  Mantel test, and variable importance and significance (p) of Generalised Dissimilarity Modelling 
(GDM) to assess the association between genetic distance and geographic distance (isolation by distance), 
landscape resistance (isolation by resistance), river disconnectivity (isolation by river), and environmental 
dissimilarity (isolation by environment) in Neurergus kaiseri populations across southwestern Zagros 
Mountains, Iran.

Figure 4.  (A) Circuitscape cumulative current map of the density of potential movement of Neurergus kaiseri 
between 16 water bodies across southwestern Zagros Mountains, Iran. Petential movement corridors of the 
species are indicated by  currents flowing through the landscape ranges from high (green colour, indicating 
the high connectivity), to low (red colour, indicating the limited movement). (B) The enlarged section of 
fragmented distribution range by the Dez River and (C) the satellite imagery of that section obtained from 
Google Earth (Image ©2018 CNES/Airbus; Imagery date: 5/19/2017).
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Discussion
By reaching the Southern extent of the geographic range of salamandrids in Eurasia, Kaiser’s newt (Neurergus 
kaiseri) takes an outstanding position. Populations of N. kaiseri cover roughly an area of only 10000 km2 and are 
potentially threatened by local extinction23. Therefore, the detailed analysis of population structure is a crucial 
basis for the effective conservation of this species in the future. Our detailed ecological niche modelling and land-
scape genetics approach allows for the identification of migration paths and parameterisation of the landscape 
factors affecting functional connectivity between sites inhabited by Kaiser’s newts. The results from our study are 
essential for landscape planning in order to avoid loss of genetic diversity due to inbreeding and genetic drift26,27 
caused by habitat fragmentation.

With our extensive dataset we could corroborate the presence of two major clades as indicated by a previous 
study based on mitochondrial markers24. These two clades are geographically separated by the Dez River resulting 
in a ‘Northern clade’ and ‘Southern clade’. Based on different genetic analyses both clades appear to be well sepa-
rated, even in the populations bordering the Dez River (the closest populations of the two clades being only 13 km 
apart). We interpret these results as a sign for a reduction, or even absence, of gene flow between the clades. Most 
likley, the Dez River has been acting as a barrier to gene flow. However, the co-ancestry between individuals from 
the Northern and Southern clades gradually increases when getting closer to the Dez River, as expected under 
a scenario of isolation by distance. The individuals from Tova (Northern clade), for example, show an interme-
diate state of co-ancestry, being more close to the Southern clade than to the Northern-most populations. Thus, 
it seems that the presence of a barrier to migration alone can’t explain the observed pattern of genetic variation.

The present analyses also revealed some interesting patterns of genetic diversity within the two clades. Even 
though populations of the Southern clade are separated by relatively large geographic distances, up to 145 km, 
they differ at ‘only’ 20% of the SNPs, while in the Northern clade the maximal observed genetic divergence is 
of 34% for a maximum geographic distance of 53.5 km. Within the Northern clade, we can further delimit four 
groups: (i) a core group of populations that are rather homogeneous and formed of most of the northernmost 
localities; (ii) the population of Shahbazan, which is still closely related to the core group although geographi-
cally distant; (iii) the populations of Bozorg Ab and Vojenab, and iv) finally the population of Tova. One possi-
ble explanation for these different patterns of genetic diversity within clades might be that during Quaternary 
climatic oscillations, the Northern part of the Zagros mountains acted as a refugium for Kaiser’s newt, while 
the Southern part was colonised more recently as climatic conditions became more suitable. Similar climatic 

Figure 5.  Generalised dissimilarity modelling (GDM) of variables associated with genetic differentiation in 
Neurergus kaiseri. (A) Relationship between predicted and observed pairwise genetic distance. Blue dots are site 
pairs, and the line represent a perfect fit for the function relating observed to predicted genetic differentiation. 
(B) Predicted spline showing the estimated non-linear relationship between genomic distance and river 
disconnectivity. (C) The geographic spline showing increasing genomic variation as geographic distance 
increases up to 50 km and no predicted genomic change between sites far than 50 km apart. The genomic 
distance does not change by increasing environmental dissimilarity (D) nor landscape resistance (E).
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processes have been assumed for shaping diversity of brown frogs in the Near East. Here, climatic oscillations 
triggered post-Messinian speciation events and populations could only survived in humid refugial areas during 
the glacial periods in the Northern Hemisphere that resulted in cold and dry weather conditions in that area, 
while an expansion was only possible during the warmer and more humid interglacial periods28. In N. kaiseri, 
a southward colonization/expansion from a northern refugium, followed by the spilt of the populations in two 
groups due to the opening of the Dez River would be a reasonable scenario in this context. However, studies 
on the effect of past climatic oscillation on population structure and patterns of genetic diversity of biota in the 
Zagros Mountains are missing and therefore it is highly speculative to link patterns of observed genetic diversity 
with specific geological as well as climatic events.

Interestingly, the divergence within and between clades on the PCA are not correlated to the same axes (see 
Fig. 3B), suggesting that these processes are linked to distinct loci in the genome. One possible explanation for 

Figure 6.  Niche of the two clades of Neurergus kaiseri at local (A) and landscape (B) spatial scale across 
southwestern Zagros Mountains, Iran. Black shading indicates the density of the occurrences of the Northern 
(A1,B1) and Southern clades (A2,B2) by cell. The solid and dashed lines, respectively demonstrate 100% and 
50% of the delimited background climate. Relative contribution of each variable is shown in a PCA-env barplot 
(A3,B3). Histograms A4 and B4 compare the observed Schoener’s D with estimated D for randomly selected 
points at climatic space of the two clades. Histograms (A5-6 and B5-6) show the observed niche overlap D 
between the two clades (bars with a diamond) and simulated niche overlaps (grey bars) on which tests of niche 
similarity are calculated. The significance of the tests is shown; ns: non-significant, s: significant (p < 0.05).
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this outcome could be that the divergence between clades has been mainly driven by genetic drift, promoted by 
barriers to migration or distance gradients, while divergence within clades could be linked to other processes, 
such as local adaptation that would involve different loci. Similar findings could be revealed from the well-studied 
salamander system – the Fire salamander (Salamandra salamandra) in Europe – where phylogenetic species 
divergence and local adaptation are realised by different sets of genes (Goedbloed et al. 2017; Czypionka et al. 
2018). Unravelling the general processes as well as genetic mechanisms associated with population structure of N. 
kaiseri at different levels will be therefore rather interesting from a general evolutionary perspective.

By analysing various habitat and ecological parameters of populations of N. kaiseri, we were able to quantify 
the role of ecological and geographical forces, such as IBD, IBR, IBRiv, and IBE in shaping genome-wide variation 
of Kaiser’s newt. As a result, we found that all four factors in isolation had an impact on genetic differentiation 
among N. kaiseri’s populations. In line with recent findings, we infer that the spatial arrangement of populations 
across landscape is determined by IBD, IBR, IBRiv, and IBE and can contribute to spatial genetic divergence29–31. 
In our study, IBRiv and IBD explained 74% of the genetic variation between populations. Some variation in 
genetic distances of the populations could be attributed to genetic drift as a consequence of intensive harvest-
ing that occurred at distinct times at several places.  Although mtDNA-based analysis showed that IBD is the 
main driver of genetic differentiation of N. kaiseri populations1, genome-wide sampled single nucleotide poly-
morphisms (SNP data), which are expected to be more informative and sensitive, indicated that rivers can be the 
main factor for disconnectivity of populations causing genetic divergence. Geographic distances between N. kai-
seri populations ranged from only 0.669 km up to 201 km. We showed that up to a scale of 50 km, geographic dis-
tance showed a measurable effect on genetic variation (differentiation at 20% of the SNPs). Beyond this distance, 
migration of newts seems to be not possible with gene flow being completely disrupted. Such a high distance is 
completely unexpected for a newt species at the southern edge of the Salamandridae’s distribution and fits nicely 
to the changing view that salamanders and newts do have a high dispersal propensity (see16,32,33).

The main clades of N. kaiseri follow a parapatric distribution pattern with displaying strong genetic differen-
tiation between clades, suggesting that a physical barrier exists to prevent gene flow between populations. The 
apparent disjunction of the two clades is probably due to the high physical landscape heterogeneity, resulting in 
a hard allopatry14. Landscape barriers can influence genetic structure of populations and can lead to inbreeding 
or loss of genetic diversity34. The cumulative current map illustrates two key water resources, Karoon and Dez 
Rivers, which may act as physical barriers to migration and gene flow of newts. Since the Dez River separates pop-
ulations of the Northern and Southern clades, ‘isolation by river’ hypothesis is strengthened under  this scenario. 
As confirmed by AMOVA analysis, there is a significant genetic differentiation between the two clades located on 
opposite sides of the Dez River. The physicochemical characteristics of a river can impact migration of amphib-
ians. With an estimated discharge of 245 m3 s−1 an annual suspended sediment load of 7.5 million tonnes (see 
Fig. 3C)35 this river might have the potential to prevent migration of newts. Lemmon, et al.36 demonstrated that 
the Teays-Mahomet River acted as a barrier between Pseudacris ferarium and P. triseriata, resulting in allopatric 
speciation. In contrast, for newts of Triturus estimated intra-specific gene flow across the Tejo River was higher 
than expected37. Still, rivers in general seem not to build a strict barrier to migration of Kaiser’s newts. Karoon 
River had a medium effect on genetic differentiation within the Southern clade, as here the results of the AMOVA 
analysis  indicated less than 50% genetic difference between populations on the both side of this river. The river 
bed of Karoon has been extended due to various dams constructed across the river over the half past century. 
Accordingly, newts may have previously passed through the Karoon to occupy new springs on the other side, but 
there is no historical evidence to prove that.

We assessed the niche of these two clades. The centroid climatic niche of the Southern clade was far beyond 
the climatic tolerance of the Northern clade. Accordingly, populations of the different clades may occupy different 
realised niches within their ancestral fundamental niche14. The random similarity of the climatic niches of the two 
clades beside a strong non-equivalency between them supports the hypothesis of niche constraint with a south-
ward shift in the Southern clade to a warmer area with higher annual precipitation and lower elevation. Evidence 
of a southward niche shift has been reported during the last glacial period for different amphibians in Europe; 
members of the genera Rana and Triturus expanded southwards and re-extended ranges across northern and 
central Europe post-glaciation38. However, exhibiting equivalent and similar niches at local habitat scale implies 
that the niche of N. kaiseri has been conserved.

We showed that the niches of the two clades tend to be conserved in geographically separate ranges. GDM 
result supportively rejected the a priori hypothesis that there is a ‘barrier of adaptation’ (i.e. IBE) for the success-
ful establishment of dispersers between sites. Therefore, our data suggest that local adaptation probably plays a 
less important role in N. kaiseri and that genetic differentiation among populations is mainly the result of other 
underlying evolutionary processes.

After the divergence of N. kaiseri from N. crocatus approximately 5 million years ago (mya) in the late 
Miocene20, Kaiser’s newt dispersed across the Zagros Mountains’ front detrital apron. The origin of stream net-
works in this area, including the Dez River, is suggested to have occurred ~3–3.5 mya in the late Pliocene39. N. 
kaiseri then extended its distribution range southwards and migrants could occupy suitable terrestrial and aquatic 
habitats for their reproduction. Consequently, it can be assumed that the two major clades of N. kaiseri diverged 
about 1–1.2 mya in the middle Pleistocene24. Overall, high physical and ecological variation may have promoted 
divergence of the two clades in presence of PNC. Since there were no transition zones between the ranges of the 
two clades, the evolution of reproductive barriers and gradual speciation seems to be likely.

Consistent with PCA-env, results of the RTR analysis did not support niche conservatism or divergence in 
climatic space, strengthening the niche constraint pattern. At a local habitat scale, the two clades occupied the 
closest analogue of the ancestral niche, but in different climatic conditions, while expanding their ranges on 
opposite sides of Dez River. Niche similarity and equivalency tests suggested ‘niche constraint’ pattern of PNC by 
showing the differences in climatic niches between the two clades and a southward shift in niche centroid over 
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time. Ecological specialisation in Kaiser’s newt, as in other amphibians, depends on different processes that occur 
at multiple spatial scales. As the species occupy similar habitats at the local-scale in alternate climatic conditions, 
adaptive (ecological) divergence of populations is more probable when niche shift occurs at the local habitat 
space.

The high genetic differentiation – both on the mitochondrial as well as on the nuclear genome-wide level - 
between the Northern and Southern clades of N. kaiseri raises the question of whether these two lineages should 
be considered as distinct species. In a recent study analysing phylogenetic relations and investigating species 
boundaries of species of Neurergus, Multi-Species Coalescent (MSC) models consistently split the Southern and 
Northern clades of N. kaiseri in two species with high support22. However, MSC models tend to ‘over-split’ lin-
eages40, and it is then important to test species hypotheses with other approaches. At a first glance, both clades 
appear to be really separated based on genome-wide differentiation of SNPs, no signs of recent hybridisation or 
ongoing gene flow (see Fig. 3B). However, the closer inspection of pairwise co-ancestry between the sampled 
individuals indicates that when getting closer to the ‘contact zone’, Northern populations have a higher relatedness 
with the Southern ones. Thus, it seems that at least one migration event has occurred from the Southern to the 
Northern clade, resulting in admixture. Analysis of the different factors correlated with genetic differentiation 
suggested that, while IBRiv is the main factor, IBD plays an important role as well. It is thus possible that, due to 
the low dispersal abilities of this newts and the presence of strong barriers to gene flow, a strong genetic structure 
rapidly emerged within the group, without reflecting reproductive isolation that could grant species status to 
the two clades. Furthermore, the observed niche conservatism between both clades further indicates a lack of 
ecological divergence.

Methods
Sampling and genetic analysis.  A field survey was conducted across the entire N. kaiseri distribution 
range in southwestern Iran in 2015. Out of 30 breeding ponds recorded for this species, we choose to sample 
only 16 sites for our study (Fig. 1). The ponds not included were close by to one the sampled sites (less than 500 m 
apart) and located in homogenous landscape and similar climatic conditions. We took tissue samples from tail 
tips (~1 cm) of larvae without scarifying them for later extraction of genomic DNA as suggested by Polich, et al.41. 
The Iranian Department of Environment issued permission for sample collection.

For the generation and assembly of the RADseq dataset we took 1 or 2 individuals per population, resulting 
in a total number of 28 individuals representing 16 populations/locations of N. kaiseri. One individual each of N. 
crocatus and N. derjugini, representing two closely related species, were used as outgroups for phylogenetic anal-
yses. Genomic DNA was extracted using the Macherey-Nagel NucleoSpin Tissue kit following the manufacturer’s 
instructions. We performed double-digest Restriction Site Associated DNA sequencing (ddRADseq42) preparing 
the library as follows25: 1 μg of DNA from each individual was double-digested using the PstI-HF and AclI restric-
tion enzymes (NewEngland Biolabs) and modified Illumina adaptors with unique barcodes for each individual 
were ligated to obtained DNA fragments. Samples were multiplexed (pooled) and a Pippin Prep was used to select 
for fragments with a size around a tight range of 383 bp, based on the fragment length distribution identified 
using a 2200 TapeStation instrument (Agilent Technologies). Finally, enrichment PCR was performed to amplify 
the library using forward and reverse RAD primers. Sequencing was conducted on an Illumina Next-Seq machine 
at Glasgow Polyomics to generate paired-end reads 75 bp in length.

De-multiplexed reads were assembled de novo using ipyrad43,44 and clustered using a 95% similarity threshold; 
base positions with a coverage >8 were called. Finally, since uneven missing data among populations can have 
deleterious impact on downstream analyses, loci with less than 28 individuals covered were discarded from fur-
ther analysis. The assembly was performed with two different subsets: one containing all the 30 samples, and one 
with only the 28 samples of N. kaiseri. Indeed, as the number of RAD loci recovered is expected to decrease when 
the evolutionary distance between samples increases, the approach allows to maximise the amount of loci used in 
analyses that do not necessitate the outgroup taxa.

Genetic structure of the populations.  We used the concatenation of the loci from the dataset with out-
groups to infer a phylogenetic tree with a maximum likelihood approach. Accordingly, we used the hill-climbing 
algorithm implemented in RAxML45, with a GTR + GAMMA substation model, and performed 100 bootstrap 
replicates.

As phylogenetic models can give an incomplete or even misleading representation of the populations his-
tory46, we also investigated the genetic structure of N. kaiseri using various population genetics approaches. First, 
we used SNPs extracted exclusively from the kaiseri populations dataset to estimate the co-ancestry between each 
pair of individuals using fineRADStructure47. Then, in order to understand the relationships between the genetic 
groups and detect potential hybrids, we used the SNPs as variables to perform Principal Component Analyses 
using the ‘adegent’ R package48. More precisely, we represented the individuals in a multivariate space depending 
on their centred-scaled allele frequency at each SNP. We then defined Principal Components (i.e. axes maximiz-
ing the variation of the variables in the multivariate space) in order to reduce the number of dimensions, and 
studied the repartition of the individuals in the space defined by the PCs.

Factors affecting genetic differentiation.  In order to analyse whether observed genetic variation of 
individuals is distributed among or within clades, we performed an Analysis of Molecular Variance (AMOVA49) 
on the 18,546 SNPs, using the ‘poppr’ package50 in R. The statistical significance of the results was assessed 
based on 99 permutations. A similar analysis was performed on a subset including only the individuals from the 
Southern clade, to test for the effect of the Karoon River on genetic differentiation. The individuals were separated 
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in two groups depending whether they were located between the Dez and Karoon Rivers (populations Shevi fall, 
Dej Mohammad-Ali Khan, Andika) or South of the Karoon River (populations Ab-Palangi, Sargach).

We estimated the pairwise genetic differentiation between localities using the SNPs from the RADseq loci. 
However, since the sampling size for each site is very low (1 or 2 individuals), widely used estimators such as FST 
can be inaccurate51. Thus, we calculated the genetic distance between individuals (i.e. the percentage of SNPs 
at which 2 individuals differed), and then averaged them to get the pairwise distance between populations. We 
recorded geographic position of presence sites over the sampling period. Pairwise Euclidean distances corre-
sponding to straight-line geographic distances between presence sites were estimated using the ‘vegan’ R pack-
age52. We used log-transformed geographic distance to rescale predictor variables in the same range.

To obtain a more accurate suitability map, we used 12 additional presence points along with the geographic 
locations of the 16 sampled populations. We created landscape resistance using all 28 trimmed presence points 
and six environmental predictor variables. All information layers including the normalised difference vegeta-
tion index (NDVI), solar radiation, Topographic Position Index (TPI), Topographic Wetness Index (TWI), dis-
tance to the conglomerate formation and distance to the forest were mapped at 30 m spatial resolution in ArcGIS 
10.4. NDVI quantifies vegetation density by measuring the difference between near-infrared, which is strongly 
reflected by the vegetation, and red light, which is absorbed by the vegetation. We used non-cloudy images of 
Landsat-7 ETM to measure NDVI values. Solar radiation is the power per unit area received from the sun and 
effects on species habitat suitability by controlling biological process53. We created an average solar radiation map 
for the 1st and 15th of each month, hourly, from March to October (active season of the target species) using the 
Solar Radiation tool. TPI represents topographic roughness by comparing the elevation of each cell in a digital 
elevation model (DEM) to the mean elevation of neighbourhood cells. We prepared TPI layer using Land Facet 
Corridor Tool54. TWI quantifies effects of topography on hydrological processes and refers to the soil moisture 
content of each cell in the landscape. To consider geological effects on the possible migration of newts we calcu-
lated the Euclidian distance to conglomerate formations in the study area (i.e. Kashakan and Bakhtiari forma-
tions). Due to their high porosity these formations store water underground and might act as temporal habitat 
for transient newt individuals. As Kaiser’s newt is highly dependent on the forest which can provides heat shelter 
for migrants, we also calculated Euclidian distance to forest land cover. We included both distance layers in the 
modelling process (all maps are available at Supplementary Fig. S2).

We presumed that the low mobile species passes from pixels at the landscape that meets multidimensional 
requirements of its Grinnelian niche (corridor dwellers55). First, for each clade we predicted the suitability value 
of each pixel of the study area through Maxent modelling. We then used the ‘maximum’ overlay method by over-
laying the two suitability maps and giving the output cells the maximum value of the two overlapping cells. This 
approach permits one-way dispersal of a clade. We then quantified the resistance layer (R) as opposite of the suita-
bility (R = 1 − S). Finally, we calculated connectivity between populations in Circuitscape 4.0.55. By assuming that 
individuals’ movement is limited across an area with high resistance (i.e. unsuitable area), Circuitscape estimates 
the density of potential dispersers through a landscape. This program revealed potential paths with the expected 
high density of dispersers. We used circuit distances matrix, calculated by Circuitscape, as resistance-based geo-
graphic distance. On the river raster, following Oliveira, et al.56, we assigned a value of 1 to main rivers in the 
study area as potential barrier of newt migration, and used Circuitscape to calculate the pairwise connectivity of 
populations that may be disconnected by the course of rivers.

We created and mapped 19 bioclim layers using ‘dismo’ R package57 based on climatology data of 20 synoptic 
stations around the study region. Besides elevation, we selected five bioclim variables including annual mean 
temperature (Bio1), mean temperature diurnal range (Bio2), temperature seasonality (Bio4), annual precipitation 
(Bio12), and precipitation seasonality (Bio15) based on physiological requirements of the species. The pairwise 
correlation between these five climatic variables was ≤0.72. Values of bioclim data were then extracted at each 
presence point to create an environmental dissimilarity matrix using ‘ecodist’ R package58.

We considered geographic distance, landscape resistance, river disconnectivity, and environmental dissimi-
larity at presence sites as the affecting variables on genetic variation. The hypothesis of isolation of populations by 
each distance matrix was separately assessed using Mantel tests in R. Significant variables were then accounted 
for Generalised Dissimilarity Modelling (GDM) as a matrix regression to estimate the non-linear relationship 
between the genomic distance of populations and its drivers59,60.

Phylogenetic niche conservatism.  We used 28 trimmed records of N. kaiseri that belonged to identified 
clades in the previous step to examine PNC in Kaiser’s newt at landscape and local scales following Willis and 
Whittaker61. The local habitat variables were NDVI, solar radiation, TPI, TWI, distance to the conglomerate 
formation and distance to forest, as briefly described above. Species occurrences were then projected onto the 
gridded environmental space of the first two PCs calculated with the local habitat variables62. In addition, the five 
bioclim variables (e.g. Bio1, Bio2, Bio4, Bio12 and Bio15) were used to calculate the climatic niche similarity of 
the two clades at the landscape-scale. For this purpose, we applied PCA-env approach62 which characterised the 
climatic space at the two first principal components of the bioclimatic values for the entire study area per pixel. 
Thereafter, the probability of ecological niche evolution between these two clades was assessed based on the 
random translocation and rotation (RTR) approach following Nunes and Pearson63. RTR is a recently developed 
approach based on the Multidimensional Overlap (MO) metric to test the significance of niche differentiation. 
The MO metric is similar to BIOCLIM, a presence-only approach that takes into account species’ occurrences to 
delimit a climate envelope. It ranges between 0 (no niche overlap) and 1 (complete niche overlap). By maintaining 
the spatial configuration of occurrences, the RTR Null model calculates MO, niche overlap metric for thousands 
of replicates while randomly translocates and rotates the position of occurrences across the study region. The 
observed MO is finally compared to the distribution of MO values generated by the Null model. The RTR test also 
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showed a great performance when dealing with rare, range-restricted species. Since RTR is suited for macro spa-
tial scales and is highly dependent on relative occurrence area (ROA), we extended the study region to an extent 
in which 10,000 RTR replicates were possible without replacement.

Data Availability
The datasets generated and analysed during the current study are available from supplementary information 
and also the corresponding author on reasonable request. Assembly datasets used for the analysis are available at 
Mendeley data repository.
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