291 research outputs found
The first radial velocity measurements of a microlensing event: no evidence for the predicted binary
The gravitational microlensing technique allows the discovery of exoplanets
around stars distributed in the disk of the galaxy towards the bulge. However,
the alignment of two stars that led to the discovery is unique over the
timescale of a human life and cannot be re-observed. Moreover, the target host
is often very faint and located in a crowded region. These difficulties hamper
and often make impossible the follow-up of the target and study of its possible
companions. Gould et al. (2013) predicted the radial-velocity curve of a binary
system, OGLE-2011-BLG-0417, discovered and characterised from a microlensing
event by Shin et al. (2012). We used the UVES spectrograph mounted at the VLT,
ESO to derive precise radial-velocity measurements of OGLE-2011-BLG-0417. To
gather high-precision on faint targets of microlensing events, we proposed to
use the source star as a reference to measure the lens radial velocities. We
obtained ten radial velocities on the putative V=18 lens with a dispersion of
~100 m/s, spread over one year. Our measurements do not confirm the
microlensing prediction for this binary system. The most likely scenario is
that the assumed V=18 mag lens is actually a blend and not the primary lens
that is 2 magnitude fainter. Further observations and analyses are needed to
understand the microlensing observation and infer on the nature and
characteristics of the lens itself.Comment: submitted on 3rd June 2015 to A&ALette
Ecological and behavioral drivers of supplemental feeding use by roe deer Capreolus capreolus in a peri-urban context
Winter supplemental feeding of ungulates potentially alters their use of resources and
ecological interactions, yet relatively little is known about the patterns of feeding sites use by target
populations. We used camera traps to continuously monitor winter and spring feeding site use in a
roe deer population living in a peri-urban area in Northern Italy. We combined circular statistics with
generalized additive and linear mixed models to analyze the diel and seasonal pattern of roe deer
visits to feeding sites, and the behavioral drivers influencing visit duration. Roe deer visits peaked at
dawn and dusk, and decreased from winter to spring when vegetation regrows and temperature
increases. Roe deer mostly visited feeding sites solitarily; when this was not the case, they stayed
longer at the site, especially when conspecifics were eating, but maintained a bimodal diel pattern
of visits. These results support an opportunistic use of feeding sites, following seasonal cycles and
the roe deer circadian clock. Yet, the attractiveness of these artificial resources has the potential to
alter intra-specific relationships, as competition for their use induces gatherings and may extend the
contact time between individuals, with potential behavioral and epidemiological consequences
Microlensing Results Challenge the Core Accretion Runaway Growth Scenario for Gas Giants
We compare the planet-to-star mass-ratio distribution measured by
gravitational microlensing to core accretion theory predictions from population
synthesis models. The core accretion theory's runaway gas accretion process
predicts a dearth of intermediate-mass giant planets that is not seen in the
microlensing results. In particular, the models predict fewer
planets at mass ratios of than inferred
from microlensing observations. This tension implies that gas giant formation
may involve processes that have hitherto been overlooked by existing core
accretion models or that the planet-forming environment varies considerably as
a function of host-star mass. Variation from the usual assumptions for the
protoplanetary disk viscosity and thickness could reduce this discrepancy, but
such changes might conflict with microlensing results at larger or smaller mass
ratios, or with other observations. The resolution of this discrepancy may have
important implications for planetary habitability because it has been suggested
that the runaway gas accretion process may have triggered the delivery of water
to our inner solar system. So, an understanding of giant planet formation may
help us to determine the occurrence rate of habitable planets.Comment: 12 pages, 2 figures, 1 table, accepted for publication in ApJ
RoboTAP: Target priorities for robotic microlensing observations
Context. The ability to automatically select scientifically-important transient events from an alert stream of many such events, and to conduct follow-up observations in response, will become increasingly important in astronomy. With wide-angle time domain surveys pushing to fainter limiting magnitudes, the capability to follow-up on transient alerts far exceeds our follow-up telescope resources, and effective target prioritization becomes essential. The RoboNet-II microlensing program is a pathfinder project, which has developed an automated target selection process (RoboTAP) for gravitational microlensing events, which are observed in real time using the Las Cumbres Observatory telescope network.
Aims. Follow-up telescopes typically have a much smaller field of view compared to surveys, therefore the most promising microlensing events must be automatically selected at any given time from an annual sample exceeding 2000 events. The main challenge is to select between events with a high planet detection sensitivity, with the aim of detecting many planets and characterizing planetary anomalies.
Methods. Our target selection algorithm is a hybrid system based on estimates of the planet detection zones around a microlens. It follows automatic anomaly alerts and respects the expected survey coverage of specific events.
Results. We introduce the RoboTAP algorithm, whose purpose is to select and prioritize microlensing events with high sensitivity to planetary companions. In this work, we determine the planet sensitivity of the RoboNet follow-up program and provide a working example of how a broker can be designed for a real-life transient science program conducting follow-up observations in response to alerts; we explore the issues that will confront similar programs being developed for the Large Synoptic Survey Telescope (LSST) and other time domain surveys
WFIRST Exoplanet Mass-measurement Method Finds a Planetary Mass of 39 ± 8 M_⊕ for OGLE-2012-BLG-0950Lb
We present the analysis of the simultaneous high-resolution images from the Hubble Space Telescope and Keck adaptive optics system of the planetary event OGLE-2012-BLG-0950 that determine that the system consists of a 0.58 ± 0.04 M_⊕ host star orbited by a 39 ± 8 M_⊕ planet at a projected separation of 2.54 ± 0.23 au. The planetary system is located at a distance of 2.19 ± 0.23 kpc from Earth. This is the second microlens planet beyond the snow line with a mass measured to be in the mass range 20–80 M_⊕. The runaway gas accretion process of the core accretion model predicts fewer planets in this mass range. This is because giant planets are thought to be growing rapidly at these masses, and they rarely complete growth at this mass. So this result suggests that the core accretion theory may need revision. This analysis also demonstrates the techniques that will be used to measure the masses of planets and their host stars by the WFIRST exoplanet microlensing survey: one-dimensional microlensing parallax combined with the separation and brightness measurement of the unresolved source and host stars to yield multiple redundant constraints on the masses and distance of the planetary system
- …