123 research outputs found

    Nab: Measurement Principles, Apparatus and Uncertainties

    Get PDF
    The Nab collaboration will perform a precise measurement of 'a', the electron-neutrino correlation parameter, and 'b', the Fierz interference term in neutron beta decay, in the Fundamental Neutron Physics Beamline at the SNS, using a novel electric/magnetic field spectrometer and detector design. The experiment is aiming at the 10^{-3} accuracy level in (Delta a)/a, and will provide an independent measurement of lambda = G_A/G_V, the ratio of axial-vector to vector coupling constants of the nucleon. Nab also plans to perform the first ever measurement of 'b' in neutron decay, which will provide an independent limit on the tensor weak coupling.Comment: 12 pages, 6 figures, 1 table, talk presented at the International Workshop on Particle Physics with Slow Neutrons, Grenoble, 29-31 May 2008; to appear in Nucl. Instrum. Meth. in Physics Research

    Discrete Symmetries and Generalized Fields of Dyons

    Full text link
    We have studied the different symmetric properties of the generalized Maxwell's - Dirac equation along with their quantum properties. Applying the parity (\mathcal{P}), time reversal (\mathcal{T}), charge conjugation (\mathcal{C}) and their combined effect like parity time reversal (\mathcal{PT}), charge conjugation and parity (\mathcal{CP}) and \mathcal{CP}T transformations to varius equations of generalized fields of dyons, it is shown that the corresponding dynamical quantities and equations of dyons are invariant under these discrete symmetries. Abstract Key words- parity, time reversal, charge-conjugation, dyons Abstract PACS No.- 14.80 Hv

    Future Directions in Parity Violation: From Quarks to the Cosmos

    Get PDF
    I discuss the prospects for future studies of parity-violating (PV) interactions at low energies and the insights they might provide about open questions in the Standard Model as well as physics that lies beyond it. I cover four types of parity-violating observables: PV electron scattering; PV hadronic interactions; PV correlations in weak decays; and searches for the permanent electric dipole moments of quantum systems.Comment: Talk given at PAVI 06 workshop on parity-violating interactions, Milos, Greece (May, 2006); 10 page

    Physics Opportunities with the 12 GeV Upgrade at Jefferson Lab

    Full text link
    This white paper summarizes the scientific opportunities for utilization of the upgraded 12 GeV Continuous Electron Beam Accelerator Facility (CEBAF) and associated experimental equipment at Jefferson Lab. It is based on the 52 proposals recommended for approval by the Jefferson Lab Program Advisory Committee.The upgraded facility will enable a new experimental program with substantial discovery potential to address important topics in nuclear, hadronic, and electroweak physics.Comment: 64 page

    Landscape-scale drivers of glacial ecosystem change in the montane forests of the eastern Andean flank, Ecuador

    Get PDF
    Understanding the impact of landscape-scale disturbance events during the last glacial period is vital in accu- rately reconstructing the ecosystem dynamics of montane environments. Here, a sedimentary succession from the tropical montane cloud forest of the eastern Andean flank of Ecuador provides evidence of the role of non- climate drivers of vegetation change (volcanic events, fire regime and herbivory) during the late-Pleistocene. Multiproxy analysis (pollen, non-pollen palynomorphs, charcoal, geochemistry and carbon content) of the se- diments, radiocarbon dated to ca. 45–42 ka, provide a snap shot of the depositional environment, vegetation community and non-climate drivers of ecosystem dynamics. The geomorphology of the Vinillos study area, along with the organic‐carbon content, and aquatic remains suggest deposition took place near a valley floor in a swamp or shallow water environment. The pollen assemblage initially composed primarily of herbaceous types (Poaceae-Asteraceae-Solanaceae) is replaced by assemblages characterised by Andean forest taxa, (first Melastomataceae-Weinmannia-Ilex, and later, Alnus-Hedyosmum-Myrica). The pollen assemblages have no modern analogues in the tropical montane cloud forest of Ecuador. High micro-charcoal and rare macro-charcoal abundances co-occur with volcanic tephra deposits suggesting transportation from extra-local regions and that volcanic eruptions were an important source of ignition in the wider glacial landscape. The presence of the coprophilous fungi Sporormiella reveals the occurrence of herbivores in the glacial montane forest landscape. Pollen analysis indicates a stable regional vegetation community, with changes in vegetation population co- varying with large volcanic tephra deposits suggesting that the structure of glacial vegetation at Vinillos was driven by volcanic activity

    Agarose-Based biomaterials: Opportunities and challenges in cartilage tissue engineering

    Get PDF
    The lack of adequate blood/lymphatic vessels as well as low-potential articular cartilage regeneration underlines the necessity to search for alternative biomaterials. Owing to their unique features, such as reversible thermogelling behavior and tissue-like mechanical behavior, agarose-based biomaterials have played a key role in cartilage tissue repair. Accordingly, the need for fabricating novel highly efficient injectable agarose-based biomaterials as hydrogels for restoration of injured cartilage tissue has been recognized. In this review, the resources and conspicuous properties of the agarose-based biomaterials were reviewed. First, different types of signals together with their functionalities in the maintenance of cartilage homeostasis were explained. Then, various cellular signaling pathways and their significant role in cartilage tissue engineering were overviewed. Next, the molecular structure and its gelling behavior have been discussed. Eventually, the latest advancements, the lingering challenges, and future ahead of agarose derivatives from the cartilage regeneration perspective have been discussed. © 2020 by the authors

    Neutrinoless double-beta decay and effective field theory

    Get PDF
    We analyze neutrinoless double β\beta-decay (\nbb-decay) mediated by heavy particles from the standpoint of effective field theory. We show how symmetries of the \nbb-decay quark operators arising in a given particle physics model determine the form of the corresponding effective, hadronic operators. We classify the latter according to their symmetry transformation properties as well as the order at which they appear in a derivative expansion. We apply this framework to several particle physics models, including R-parity violating supersymmetry (RPV SUSY) and the left-right symmetric model (LRSM) with mixing and a right-handed Majorana neutrino. We show that, in general, the pion exchange contributions to \nbb-decay dominate over the short-range four-nucleon operators. This confirms previously published RPV SUSY results and allows us to derive new constraints on the masses in the LRSM. In particular, we show how a non-zero mixing angle ζ\zeta in the left-right symmetry model produces a new potentially dominant contribution to \nbb-decay that substantially modifies previous limits on the masses of the right-handed neutrino and boson stemming from constraints from \nbb-decay and vacuum stability requirements.Comment: 37 pages. Accepted for publication in PR
    corecore