9 research outputs found

    Synthesis, Characterisation, and Preliminary Anti-Cancer Photodynamic Therapeutic \u3ci\u3eIn Vitro\u3c/i\u3e Studies of Mixed-Metal Binuclear Ruthenium(II)-Vanadium(IV) Complexes

    Get PDF
    We report the synthesis and characterisation of mixed-metal binuclear ruthenium(II)-vanadium(IV) complexes, which were used as potential photodynamic therapeutic agents for melanoma cell growth inhibition. The novel complexes, [Ru(pbt)2(phen2DTT)](PF6)2•1.5H2O 1 (where phen2DTT = 1,4-bis(1,10-phenanthrolin-5-ylsulfanyl)butane-2,3-diol and pbt = 2-(2\u27-pyridyl)benzothiazole) and [Ru(pbt)2(tpphz)](PF6)2•3H2O 2 (where tpphz = tetrapyrido[3,2-a:2′,3′-c:3″,2″-h:2‴,3‴-j]phenazine) were synthesised and characterised. Compound 1 was reacted with [VO(sal-L-tryp)(H2O)] (where sal-L-tryp = N-salicylidene-L-tryptophanate) to produce [Ru(pbt)2(phen2DTT)VO(sal-L-tryp)](PF6)2•5H2O 4; while [VO(sal-L-tryp)(H2O)] was reacted with compound 2 to produce [Ru(pbt)2(tpphz)VO(sal-L-tryp)](PF6)2•6H2O 3. All complexes were characterised by elemental analysis, HRMS, ESI MS, UV-visible absorption, ESR spectroscopy, and cyclic voltammetry, where appropriate. In vitro cell toxicity studies (with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) colorimetric assay) via dark and light reaction conditions were carried out with sodium diaqua-4,4\u27,4”,4”\u27tetrasulfophthalocyaninecobaltate(II) (Na4[Co(tspc)(H2O)2]), [VO(sal-L-tryp)(phen)]•H2O, and the chloride salts of complexes 3 and 4. Such studies involved A431, human epidermoid carcinoma cells; human amelanotic malignant melanoma cells; and HFF, non-cancerous human skin fibroblast cells. Both chloride salts of complexes 3 and 4 were found to be more toxic to melanoma cells than to non-cancerous fibroblast cells, and preferentially led to apoptosis of the melanoma cells over non-cancerous skin cells. The anti-cancer property of the chloride salts of complexes 3 and 4 was further enhanced when treated cells were exposed to light, while no such effect was observed on non-cancerous skin fibroblast cells. ESR and 51V NMR spectroscopic studies were also used to assess the stability of the chloride salts of complexes 3 and 4 in aqueous media at pH 7.19. This research illustrates the potential for using mixed-metal binuclear ruthenium(II)-vanadium(IV) complexes fighting skin cancer

    A Comparison of the Self Assembled Frameworks of Three Cobalt(II) Coordination Compounds Bearing Dipicolinic Acid and Chelidamic Acid Ligands

    No full text
    A comparison of the self assembled lattice structures of unpublished coordination compound, [Co(dipic-OH)(OH2)3]·1.5H2O (I) (where dipic-OH = 4-hydroxypyridine-2,6-dicarboxylate anion) and two novel cobalt(II)-containing coordination compounds, [Co(dipic)(pyz)(OH2)]·0.25DMSO (II) (where dipic = dipicolinate anion and pyz = 2-(H-pyrazol-3-yl)-pyridine) and [Co(dipic-OH)(pyz)(OH2)]·H2O (III), have revealed remarkable distinctions in the hierarchy of their respective structures. The three dimensional (3-D) layered scaffold of compound I and the “zigzag” motifs of compounds II and III were found to have been created via unique hydrogen bonding patterns. Interestingly, compound III displayed a secondary 3-D channel framework, which was made possible by π–π stacking interactions. Spectroscopic studies yielded results that were consistent with the predicted behaviors of the various species of substituted ligands. X-ray crystallography revealed that compound I crystallized in the monoclinic space group C2/c with a = 14.734(3) Å, b = 6.8664(14) Å, c = 22.411(5) Å, α = 90°, β = 90.097(7)°, γ = 90°, V = 2267.4(8) Å3, Z = 8; compound II crystallized in the monoclinic space group P21/n with a = 11.621(3) Å, b = 12.391(3) Å, c = 12.537(4) Å, α = 90°, β = 102.148(11)°, γ = 90°, V = 1764.8(8) Å3, Z = 4; and compound III crystallized in the orthorhombic space group Pccn with a = 21.899(2) Å, b = 10.8845(11) Å, c = 15.7093(13) Å, α = 90°, β = 90°, γ = 90°, V = 3744.4(6) Å3, Z = 8

    CCDC 908444: Experimental Crystal Structure Determination

    No full text
    Related Article: Varma H. Rambaran, Travis R. Erves, Kristy Grover, Shawna Balof, LaMaryet V. Moody, Stuart E. Ramsdale, Luke A. Seymour, Don VanDerveer, Donald M. Cropek, Ralph T. Weber, Alvin A. Holder|2013|J.Chem.Cryst.|43|509|doi:10.1007/s10870-013-0437-7,An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures

    CCDC 908445: Experimental Crystal Structure Determination

    No full text
    Related Article: Varma H. Rambaran, Travis R. Erves, Kristy Grover, Shawna Balof, LaMaryet V. Moody, Stuart E. Ramsdale, Luke A. Seymour, Don VanDerveer, Donald M. Cropek, Ralph T. Weber, Alvin A. Holder|2013|J.Chem.Cryst.|43|509|doi:10.1007/s10870-013-0437-7,An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures

    CCDC 908446: Experimental Crystal Structure Determination

    No full text
    Related Article: Varma H. Rambaran, Travis R. Erves, Kristy Grover, Shawna Balof, LaMaryet V. Moody, Stuart E. Ramsdale, Luke A. Seymour, Don VanDerveer, Donald M. Cropek, Ralph T. Weber, Alvin A. Holder|2013|J.Chem.Cryst.|43|509|doi:10.1007/s10870-013-0437-7,An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures

    Molybdenum (Molybdaenum): Its History, Occurrence, Brief Inorganic and Bioinorganic Chemistry

    No full text
    This chapter describes the history, occurrence, and brief inorganic and bioinorganic chemistry of molybdenum, inclusive of the molybdate(VI) chemistry as researched by Alvin A. Holder and Tara P. Dasgupta. Sections are also dedicated to basic molybdenum chemistry, 95Mo NMR spectroscopy, inorganic reaction mechanisms, catalysis, and medicinal uses of molybdenum compounds. © 2013 by Nova Science Publishers, Inc. All rights reserved

    Preliminary Anti-Cancer Photodynamic Therapeutic \u3ci\u3eIn Vitro\u3c/i\u3e Studies With Mixed-Metal Binuclear Ruthenium(II)-Vanadium(IV) Complexes

    No full text
    We report the synthesis and characterisation of mixed-metal binuclear ruthenium(II)–vanadium(IV) complexes, which were used as potential photodynamic therapeutic agents for melanoma cell growth inhibition. The novel complexes, [Ru(pbt)2(phen2DTT)](PF6)2·1.5H2O 1 (where phen2DTT = 1,4-bis(1,10-phenanthrolin-5-ylsulfanyl)butane-2,3-diol and pbt = 2-(2′-pyridyl)benzothiazole) and [Ru(pbt)2(tpphz)](PF6)2·3H2O 2 (where tpphz = tetrapyrido[3,2-a:2′,3′-c:3′′,2′′-h:2′′′,3′′′-j]phenazine) were synthesised and characterised. Compound 1 was reacted with [VO(sal-L-tryp)(H2O)] (where sal-L-tryp = N-salicylidene-L-tryptophanate) to produce [Ru(pbt)2(phen2DTT)VO(sal-L-tryp)](PF6)2·5H2O 4; while [VO(sal-L-tryp)(H2O)] was reacted with compound 2 to produce [Ru(pbt)2(tpphz)VO(sal-L-tryp)](PF6)2·6H2O 3. All complexes were characterised by elemental analysis, HRMS, ESI MS, UV-visible absorption, ESR spectroscopy, and cyclic voltammetry, where appropriate. In vitro cell toxicity studies (with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) colorimetric assay) via dark and light reaction conditions were carried out with sodium diaqua-4,4′,4′′,4′′′ tetrasulfophthalocyaninecobaltate(II) (Na4[Co(tspc)(H2O)2]), [VO(sal-L-tryp)(phen)]·H2O, and the chloride salts of complexes 3 and 4. Such studies involved A431, human epidermoid carcinoma cells; human amelanotic malignant melanoma cells; and HFF, non-cancerous human skin fibroblast cells. Both chloride salts of complexes 3 and 4 were found to be more toxic to melanoma cells than to non-cancerous fibroblast cells, and preferentially led to apoptosis of the melanoma cells over non-cancerous skin cells. The anti-cancer property of the chloride salts of complexes 3 and 4 was further enhanced when treated cells were exposed to light, while no such effect was observed on non-cancerous skin fibroblast cells. ESR and 51V NMR spectroscopic studies were also used to assess the stability of the chloride salts of complexes 3 and 4 in aqueous media at pH 7.19. This research illustrates the potential for using mixed-metal binuclear ruthenium(II)–vanadium(IV) complexes to fight skin cancer
    corecore