65 research outputs found

    NKG7 enhances CD8+ T cell synapse efficiency to limit inflammation

    Get PDF
    Cytotoxic lymphocytes are essential for anti-tumor immunity, and for effective responses to cancer immunotherapy. Natural killer cell granule protein 7 (NKG7) is expressed at high levels in cytotoxic lymphocytes infiltrating tumors from patients treated with immunotherapy, but until recently, the role of this protein in cytotoxic lymphocyte function was largely unknown. Unexpectedly, we found that highly CD8+ T cell-immunogenic murine colon carcinoma (MC38-OVA) tumors grew at an equal rate in Nkg7+/+ and Nkg7-/- littermate mice, suggesting NKG7 may not be necessary for effective CD8+ T cell anti-tumor activity. Mechanistically, we found that deletion of NKG7 reduces the ability of CD8+ T cells to degranulate and kill target cells in vitro. However, as a result of inefficient cytotoxic activity, NKG7 deficient T cells form a prolonged immune synapse with tumor cells, resulting in increased secretion of inflammatory cytokines, including tumor necrosis factor alpha (TNF). By deleting the TNF receptor, TNFR1, from MC38-OVA tumors, we demonstrate that this hyper-secretion of TNF compensates for reduced synapse-mediated cytotoxic activity against MC38-OVA tumors in vivo, via increased TNF-mediated tumor cell death. Taken together, our results demonstrate that NKG7 enhances CD8+ T cell immune synapse efficiency, which may serve as a mechanism to accelerate direct cytotoxicity and limit potentially harmful inflammatory responses

    A novel homozygous UMOD mutation reveals gene dosage effects on uromodulin processing and urinary excretion

    Get PDF
    Heterozygous mutations in UMOD\textit{UMOD} encoding the urinary protein uromodulin are the most common genetic cause of autosomal dominant tubulointerstitial kidney disease (ADTKD). We describe the exceptional case of a patient from a consanguineous family carrying a novel homozygous UMOD\textit{UMOD} mutation (p.C120Y) affecting a conserved cysteine residue within the EGF-like domain III of uromodulin. Comparison of heterozygote and homozygote mutation carriers revealed a gene dosage effect with unprecedented low levels of uromodulin and aberrant uromodulin fragments in the urine of the homozygote proband. Despite an amplified biological effect of the homozygote mutation, the proband did not show a strikingly more severe clinical evolution nor was the near absence of urinary uromodulin associated with urinary tract infections or kidney stones.J.A.S. is supported by the Kidney Research Fund and the Medical Research Council (MR/M012212/1). S.A.R. is a Kidney Research UK Post-Doctoral Fellow. O.D. is supported by grants from the European Community’s Seventh Framework Programme (305608 EURenOmics), the Swiss National Centre of Competence in Research Kidney Control of Homeostasis (NCCR Kidney.CH) programme, the Swiss National Science Foundation (31003A_169850) and the Rare Disease Initiative Zu¨rich (Radiz), a clinical research priority program of the University of Zurich, Switzerland. E.O. is supported by the Fonds National de la Recherche Luxembourg (6903109) and the University Research Priority Programme ‘Integrative Human Physiology, ZIHP’ of the University of Zurich

    Antigen-driven EGR2 expression is required for exhausted CD8 + T cell stability and maintenance

    Get PDF
    Chronic stimulation of CD8 T cells triggers exhaustion, a distinct differentiation state with diminished effector function. Exhausted cells exist in multiple differentiation states, from stem-like progenitors that are the key mediators of the response to checkpoint blockade, through to terminally exhausted cells. Due to its clinical relevance, there is substantial interest in defining the pathways that control differentiation and maintenance of these subsets. Here, we show that chronic antigen induces the anergy-associated transcription factor EGR2 selectively within progenitor exhausted cells in both chronic LCMV and tumours. EGR2 enables terminal exhaustion and stabilizes the exhausted transcriptional state by both direct EGR2-dependent control of key exhaustion-associated genes, and indirect maintenance of the exhausted epigenetic state. We show that EGR2 is a regulator of exhaustion that epigenetically and transcriptionally maintains the differentiation competency of progenitor exhausted cells. +This work was funded by National Institutes of Health Grant U19-AI100627, the Swiss National Science Foundation and the Novartis Foundation for Medical-Biological Research (S.S.G.), the Australian Cancer Research Foundation (for the Peter Mac Flow Cytometry and Molecular Genomics facilities) and by the National Health and Medical Research Council (NHMRC) through Program Grants 1016953 & 1113904, Ideas Grant APP2001719, Australia Fellowship 585490 (C.C.G.), Senior Principal Research Fellowships (1081858, C.C.G., 1139607, A.K.), and CJ Martin Early Career Fellowship 585518 (I.A.P.)

    A Spitzer Space Telescope survey of massive young stellar objects in the G333.2-0.4 giant molecular cloud

    Full text link
    The G333 giant molecular cloud contains a few star clusters and H II regions, plus a number of condensations currently forming stars. We have mapped 13 of these sources with the appearance of young stellar objects (YSOs) with the Spitzer Infrared Spectrograph in the SL, SH, and LH modules (5-36 micron). We use these spectra plus available photometry and images to characterize the YSOs. The spectral energy distributions (SEDs) of all sources peak between 35 and 110 micron, thereby showing their young age. The objects are divided into two groups: YSOs associated with extended emission in IRAC band 2 at 4.5 micron (`outflow sources') and YSOs that have extended emission in all IRAC bands peaking at the longest wavelengths (`red sources'). The two groups of objects have distinctly different spectra: All the YSOs associated with outflows show evidence of massive envelopes surrounding the protostar because the spectra show deep silicate absorption features and absorption by ices at 6.0, 6.8, and 15.2 micron. We identify these YSOs with massive envelopes cool enough to contain ice-coated grains as the `bloated' protostars in the models of Hosokawa et al. All spectral maps show ionized forbidden lines and PAH emission features. For four of the red sources, these lines are concentrated to the centres of the maps, from which we infer that these YSOs are the source of ionizing photons. Both types of objects show evidence of shocks, with most of the outflow sources showing a line of [S I] in the outflows and two of the red sources showing the more highly excited [Ne III] and [S IV] lines in outflow regions at some distance from the YSOs. The 4.5 micron emission seen in the IRAC band 2 images of the outflow sources is not due to H2 lines, which are too faint in the 5-10 micron wavelength region to be as strong as is needed to account for the IRAC band 2 emission.Comment: 31 pages and 30 figures in the paper plus 11 figures from the online Supporting Information. To be published in the MNRAS. Version 2 has many small changes (typos, spelling, punctuation) and reordering of the Supporting Information figures to make this version conform to the paper that will be printed in MNRA

    Non-canonical Wnt signalling regulates scarring in biliary disease via the planar cell polarity receptors

    Get PDF
    The number of patients diagnosed with chronic bile duct disease is increasing and in most cases these diseases result in chronic ductular scarring, necessitating liver transplantation. The formation of ductular scaring affects liver function; however, scar-generating portal fibroblasts also provide important instructive signals to promote the proliferation and differentiation of biliary epithelial cells. Therefore, understanding whether we can reduce scar formation while maintaining a pro-regenerative microenvironment will be essential in developing treatments for biliary disease. Here, we describe how regenerating biliary epithelial cells express Wnt-Planar Cell Polarity signalling components following bile duct injury and promote the formation of ductular scars by upregulating pro-fibrogenic cytokines and positively regulating collagen-deposition. Inhibiting the production of Wnt-ligands reduces the amount of scar formed around the bile duct, without reducing the development of the pro-regenerative microenvironment required for ductular regeneration, demonstrating that scarring and regeneration can be uncoupled in adult biliary disease and regeneration

    Is There an Economical Running Technique? A Review of Modifiable Biomechanical Factors Affecting Running Economy

    Get PDF
    • …
    corecore