3,273 research outputs found

    Infrared Line Emission from Planetary Nebulae. I - General Theory

    Get PDF
    General theory of infrared line emission from planetary nebul

    Induction of p53 protein by gamma radiation in lymphocyte lines from breast cancer and ataxia telangiectasia patients.

    Get PDF
    Exposure of human cells to gamma-radiation causes levels of the tumour-suppressor nuclear protein p53 to increase in temporal association with the decrease in replicative DNA synthesis. Cells from patients with the radiosensitive and cancer-prone disease ataxia telangiectasia (AT) exhibit radioresistant DNA synthesis and show a reduced or delayed gamma-radiation-induced increase in p53 protein levels. We have used Western immunoblotting with semiquantitative densitometry to examine the gamma-radiation-induced levels of p53 protein in 57 lymphoblastoid cell lines (LCLs) derived from patients with AT, carriers of the AT gene, breast cancer patients and normal donors. We confirm the previously reported reduced induction in AT homozygote LCLs (n = 8) compared with normal donor LCLs (n = 17, P = 0.01). We report that AT heterozygote LCLs (n = 5) also have a significantly reduced p53 induction when compared with LCLs from normal donors (n = 17, P = 0.02). The response of breast cancer patient cells was not significantly different from normal donor cells but 18% (5/27) had a p53 response in the AT heterozygote range (95% confidence interval) compared with only 6% (1/17) of the normal donor cells. We found no significant correlation between p53 induction and cellular radiosensitivity in LCLs from breast cancer patients. These methods may be useful in identifying individuals at greater risk of the DNA-damaging effects of ionising radiation

    Quadratic reheating

    Get PDF
    The reheating process for the inflationary scenario is investigated phenomenologically. The decay of the oscillating massive inflaton field into light bosons is modeled after an out of equilibrium mixture of interacting fluids within the framework of irreversible thermodynamics. Self-consistent, analytic results for the evolution of the main macroscopic magnitudes like temperature and particle number densities are obtained. The models for linear and quadratic decay rates are investigated in the quasiperfect regime. The linear model is shown to reheat very slowly while the quadratic one is shown to yield explosive particle and entropy production. The maximum reheating temperature is reached much faster and its magnitude is comparable with the inflaton mass.Comment: 21 pages, LaTeX 2.09, 4 figures. To be published in International Journal of Modern Physics

    Signal Mast Arm Fatigue Failure Investigation

    Get PDF
    The Missouri Department of Transportation (MoDOT) has discovered and documented failures in several cantilever mast arms in the recent years. The failures were primarily by fatigue at the weld of the arm to the base plate attached to the mast. With over 6000 mast arms in service in Missouri, the failures raised concerns with the existing mast arm inventory and future mast arm design. This report presents findings from an effort to determine the cause of unexpected cracking in Missouri mast arms. Three causes of premature failure were investigated: the stress ranges experienced at the weld detail were higher than anticipated, the number of cycles experienced at the weld detail were larger than anticipated and/or the weld quality was less than expected. The results show that the main culprit for the premature fatigue failure of mast arms in Missouri can be attributed to poor weld quality. The new fatigue-resistant weld detail, without quality welding techniques, does not improve the situation. The loads and cycles of loads experienced by the mast arms are not necessarily critical if the weld is of high quality. Recommendations for possible solutions for existing in-service mast arms and for new mast arms are presented. The recommendations range from insuring weld quality to dampers on the mast arms

    Origin-of-transfer sequences facilitate mobilisation of non-conjugative antimicrobial-resistance plasmids in Staphylococcus aureus

    Get PDF
    Staphylococcus aureus is a common cause of hospital, community and livestock-associated infections and is increasingly resistant to multiple antimicrobials. A significant proportion of antimicrobial-resistance genes are plasmid-borne, but only a minority of S. aureus plasmids encode proteins required for conjugative transfer or Mob relaxase proteins required for mobilisation. The pWBG749 family of S. aureus conjugative plasmids can facilitate the horizontal transfer of diverse antimicrobial-resistance plasmids that lack Mob genes. Here we reveal that these mobilisable plasmids carry copies of the pWBG749 origin-of-transfer (oriT) sequence and that these oriT sequences facilitate mobilisation by pWBG749. Sequences resembling the pWBG749 oriT were identified on half of all sequenced S. aureus plasmids, including the most prevalent large antimicrobial-resistance/virulence-gene plasmids, pIB485, pMW2 and pUSA300HOUMR. oriT sequences formed five subfamilies with distinct inverted-repeat-2 (IR2) sequences. pWBG749-family plasmids encoding each IR2 were identified and pWBG749 mobilisation was found to be specific for plasmids carrying matching IR2 sequences. Specificity of mobilisation was conferred by a putative ribbon-helix-helix-protein gene smpO. Several plasmids carried 2–3 oriT variants and pWBG749-mediated recombination occurred between distinct oriT sites during mobilisation. These observations suggest this relaxase-in trans mechanism of mobilisation by pWBG749-family plasmids is a common mechanism of plasmid dissemination in S. aureus

    Metabolic modeling for predicting VFA production from protein‐rich substrates by mixed‐culture fermentation

    Get PDF
    This is the peer reviewed version of the following article: Regueira, A, Lema, JM, Carballa, M, Mauricio‐Iglesias, M. Metabolic modeling for predicting VFA production from protein‐rich substrates by mixed‐culture fermentation. Biotechnology and Bioengineering. 2020; 117: 73– 84, which has been published in final form at https://doi.org/10.1002/bit.27177. This article may be used for non‐commercial purposes in accordance with Wiley Terms and Conditions for Use of Self‐Archived VersionsProteinaceous organic wastes are suitable substrates to produce high added‐value products in anaerobic mixed‐culture fermentations. In these processes, the stoichiometry of the biotransformation depends highly on operational conditions such as pH or feeding characteristics and there are still no tools that allow the process to be directed toward those products of interest. Indeed, the lack of product selectivity strongly limits the potential industrial development of these bioprocesses. In this work, we developed a mathematical metabolic model for the production of volatile fatty acids from protein‐rich wastes. In particular, the effect of pH on the product yields is analyzed and, for the first time, the observed changes are mechanistically explained. The model reproduces experimental results at both neutral and acidic pH and it is also capable of predicting the tendencies in product yields observed with a pH drop. It also offers mechanistic insights into the interaction among the different amino acids (AAs) of a particular protein and how an AA might yield different products depending on the relative abundance of other AAs. Particular emphasis is placed on the utility of this mathematical model as a process design tool and different examples are given on how to use the model for this purposeThe authors would like to acknowledge the support of the Spanish Ministry of Education (FPU14/05457) and project BIOCHEM (ERA-IB-2 7th call, ERA-IB-16-052) funded by MINECO (PCIN 2016-102). A. Regueira would like to thank the CRETUS Strategic Partnership (ED431E 2018/01), for a research stay grant. A. Regueira, M. Miguel-Mauricio and J. M. Lema belong to the Galician Competitive Research Group ED431C2017/029 and to the CRETUS Strategic Partnership, both programmes are co-funded by FEDER (UE)S

    Ultraviolet Emission Line Ratios of Cataclysmic Variables

    Get PDF
    We present a statistical analysis of the ultraviolet emission lines of cataclysmic variables (CVs) based on ≈430\approx 430 ultraviolet spectra of 20 sources extracted from the International Ultraviolet Explorer Uniform Low Dispersion Archive. These spectra are used to measure the emission line fluxes of N V, Si IV, C IV, and He II and to construct diagnostic flux ratio diagrams. We investigate the flux ratio parameter space populated by individual CVs and by various CV subclasses (e.g., AM Her stars, DQ Her stars, dwarf novae, nova-like variables). For most systems, these ratios are clustered within a range of ∌1\sim 1 decade for log Si IV/C IV ≈−0.5\approx -0.5 and log He II/C IV ≈−1.0\approx -1.0 and ∌1.5\sim 1.5 decades for log N V/C IV ≈−0.25\approx -0.25. These ratios are compared to photoionization and collisional ionization models to constrain the excitation mechanism and the physical conditions of the line-emitting gas. We find that the collisional models do the poorest job of reproducing the data. The photoionization models reproduce the Si IV/C IV line ratios for some shapes of the ionizing spectrum, but the predicted N V/C IV line ratios are simultaneously too low by typically ∌0.5\sim 0.5 decades. Worse, for no parameters are any of the models able to reproduce the observed He II/C IV line ratios; this ratio is far too small in the collisional and scattering models and too large by typically ∌0.5\sim 0.5 decades in the photoionization models.Comment: LaTeX format, uses aaspp4.sty, 28 pages, 11 Postscript figures, accepted for publication in The Astrophysical Journal 10/16/9

    Orogen-parallel deformation of the Himalayan mid-crust: Insights from structural and magnetic fabric analyses of the Greater Himalayan Sequence, Annapurna-Dhaulagiri Himalaya, central Nepal

    Get PDF
    The metamorphic core of the Himalaya (Greater Himalayan Sequence, GHS), in the Annapurna-Dhaulagiri region, central Nepal, recorded orogen-parallel stretching during midcrustal evolution. Anisotropy of magnetic susceptibility and field-based structural analyses suggest that midcrustal deformation of the amphibolite facies core of the GHS occurred under an oblate/suboblate strain regime with associated formation of low-angle northward dipping foliation. Magnetic and mineral stretching lineations lying within this foliation from the top of the GHS record right-lateral orogen-parallel stretching. We propose that oblate strain within a midcrustal flow accommodated oblique convergence between India and the arcuate orogenic front without the need for strain partitioning in the upper crust. Oblate flattening may have also promoted orogen-parallel melt migration and development of melt-depleted regions between km3 scale leucogranite culminations at ~50–100 km intervals along orogen strike. Following the cessation of flow, continued oblique convergence led to upper crustal strain partitioning between orogen-perpendicular convergence on thrust faults and orogen-parallel extension on normal and strike-slip faults. In the Annapurna-Dhaulagiri Himalaya, orogen-parallel stretching lineations are interpreted as a record of transition from midcrustal orogen-perpendicular extrusion to upper crustal orogen-parallel stretching. Our findings suggest that midcrustal flow and upper crustal extension could not be maintained simultaneously and support other studies from across the Himalaya, which propose an orogen-wide transition from midcrustal orogen-perpendicular extrusion to upper crustal orogen-parallel extension during the mid-Miocene. The 3-D nature of oblate strain and orogen-parallel stretching cannot be replicated by 2-D numerical simulations of the Himalayan orogen
    • 

    corecore