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Abstract 8 

Proteinaceous organic wastes are suitable substrates to produce high added-value products 9 

in anaerobic mixed-culture fermentations. In these processes the stoichiometry of the 10 

biotransformations depends highly on operational conditions such as pH or feeding 11 

characteristics and there are still no tools that allow the process to be directed towards those 12 

products of interest. Indeed, the lack of product selectivity strongly limits the potential 13 

industrial development of these bioprocesses. In this work we developed a mathematical 14 

metabolic model for the production of volatile fatty acids from protein-rich wastes. In 15 

particular, the effect of pH on the product yields is analysed and, for the first time, the 16 

observed changes are mechanistically explained. The model reproduces experimental results 17 

at both neutral and acidic pH and it is also capable of predicting the tendencies in product 18 

yields observed with a pH drop. It also offers mechanistic insight into the interaction among 19 

the different amino acids of a particular protein and how an amino acid might yield different 20 

products depending on the relative abundance of other amino acids. Particular emphasis is 21 

placed on the utility of this mathematical model as a process design tool and different 22 

examples are given on how to use the model for this purpose. 23 

Keywords: Metabolic modelling; mixed cultures; process design; volatile fatty acids 24 

production; anaerobic protein degradation. 25 

26 
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1. INTRODUCTION 27 

Mixed-culture fermentations (MCF), also known as open fermentations, are recognised as a valid 28 

process to yield added-value products from organic residues (Robbert Kleerebezem, Joosse, 29 

Rozendal, & Loosdrecht, 2015). The main outcome of these processes operated under anaerobic 30 

conditions is a mixture of volatile fatty acids (VFA) which can be purified and valorised as 31 

valuable chemicals or can be the substrates of subsequent bioprocesses producing bioplastics or 32 

biofuels, in a production scheme coined biorefinery (Agler, Wrenn, Zinder, & Angenent, 2011). 33 

Using mixed cultures gives place to economic and operational advantages: i) continuous 34 

operation processes are possible since sterilisation can be avoided, which significantly lowers 35 

the operating costs of the process while increasing its productivity; ii) mixed cultures are 36 

functionally diverse, thus allowing the treatment of complex substrates and adding 37 

robustness to the process since they can cope with changes in the feeding and in the 38 

operational conditions (Carballa, Regueiro, & Lema, 2015). However, their use also poses 39 

operational challenges since they are poorly defined, complex and dynamic communities of 40 

microorganisms, with a not-fully-understood behaviour. Consequently, engineering novel 41 

processes based on mixed cultures is a difficult task and one of the barriers towards 42 

industrial-level applications of bioprocesses based on MCF.  43 

The low product selectivity commonly encountered in MCF is one of the limitations 44 

preventing the process viability. Besides, as product spectra could vary with operational 45 

conditions (pH, HRT, feeding), the process design and optimisation is only possible at the 46 

expense of a large number of experimental trials. In this sense, metabolic energy-based 47 

models have been able to explain mechanistically the product spectrum of MCF and can be 48 

useful tools for predicting the stoichiometry of MCF (González-Cabaleiro, Lema, & 49 

Rodríguez, 2015). This kind of models assumes that in energy-constrained environments the 50 

competition for substrate selects those microorganisms capable of harvesting the maximum 51 
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energy from it. The metabolic pathways leading to the maximum net energy production will 52 

govern, in consequence, the product spectrum of the process. 53 

Suitable organic wastes for mixed-culture fermentations at industrial scale include the 54 

organic fraction of urban waste or agro-industrial residual streams (e.g. cheese whey or 55 

canning industry waste). These organic wastes contain carbohydrates, proteins and lipids. 56 

While short carbohydrates have been extensively tackled from an experimental (Temudo, 57 

Kleerebezem, & van Loosdrecht, 2007) and modelling (González-Cabaleiro et al., 2015; 58 

Rodriguez, Kleerebezem, Lema, & van Loosdrecht, 2006) point of view, proteins and lipids 59 

degradation has been barely addressed.  60 

Ramsay and Pullammanappallil (2001) proposed a product spectrum predictor for 61 

the MCF of proteins, with the objective of better understanding its anaerobic digestion (to 62 

methane). In that work it was assumed that the outcome of protein MCF is unaltered by 63 

changes in operational conditions (e.g. pH) and that the different amino acids (AA) are 64 

degraded always through the same pathways. Protein conversion is also assumed to be 65 

complete in all cases. That means that only protein composition in AA would affect the 66 

product spectrum as their degradation pathways would be fixed. However, experimental 67 

evidence contradicts most of these assumptions. Protein degradation is not complete and 68 

the degradation extent can be affected by pH (Breure & van Andel, 1984; Yu & Fang, 2003), 69 

temperature (Yu & Fang, 2003) or dilution rate (Breure, Mooijman, & van Andel, 1986). 70 

Moreover, the resulting product spectrum is dependent on variables such as pH (Breure, 71 

Beeftink, Verkuijlen, & Andel, 1986; Breure & van Andel, 1984). 72 

The objective of this work is to develop an energy-based metabolic model for the 73 

production of VFA from the degradation of proteins in anaerobic fermentation processes 74 

using mixed cultures of microorganisms. We intend to give mechanistic insight on the 75 

degradation of the different AA and to predict the stoichiometry of VFA production in 76 
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protein MCF, the protein conversion and how they are affected by the environmental 77 

conditions of the reactor. The influence of pH in the process outcome was specially studied 78 

because it is one of the most manipulable design variables and due to its high impact on the 79 

energetics of the system. The final goal of this model is to serve as a design tool for MCF-80 

based processes that use protein-rich wastes as substrate. 81 

2. MODEL DESCRIPTION AND SOLUTION 82 

The model development was based on the approach used by González-Cabaleiro et al. (2015) 83 

for building a glucose fermentation model. The model is built on the mass balances in a 84 

continuous stirred tank reactor (CSTR) of the different compounds (states) (Eq. S1-S4). There 85 

are 68 states, of which three are moieties related with ATP (ATP, ADP and Pi). The rest 86 

represent the concentration of different intracellular compounds (24), extracellular compounds 87 

in the bulk reactor (40), gaseous compounds (3) and biomass. NAD+ to NADH ratio is set 88 

fixed to a value of 10 and the intracellular AA concentrations are assumed constant at a value 89 

of 0.1 mM following the previously reported guidelines and therefore are not states. There are 90 

113 possible reactions, resulting in a 68x113 metabolic network matrix. Amongst all the 91 

reaction rates, 22 of them are independent, i.e. depending solely on extracellular 92 

concentrations. 93 

2.1 Model hypotheses 94 

✓ As fermentations are low-energy environments (González-Cabaleiro, Lema, Rodríguez, & 95 

Kleerebezem, 2013; Hoehler & Jørgensen, 2013; Jackson & McInerney, 2002; LaRowe, 96 

Dale, Amend, & Van Cappellen, 2012) the microorganisms capable of harvesting the most 97 

energy (in form of ATP) from the substrate will likely dominate the community in a CSTR 98 

(i.e. when substrate is limiting). Therefore, in these conditions the microbial competition is 99 

governed by efficiency in substrate utilisation rather than on speed in substrate uptake. It is 100 

expected then that kinetic differences on AA consumption do not play an important role in 101 
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this environment. In consequence, the parameters of the Monod uptake rate equation were 102 

set equal for the different AA. Following González-Cabaleiro et al. 2015, we consider the 103 

maximum uptake rate as 0.75 mol AA Lx
-1 h-1 and the affinity constant as 1 mM. 104 

✓ It is considered that there is a population of one virtual microorganism capable of 105 

performing all the theoretical metabolic pathways. This approach assumes that all 106 

intracellular metabolites are always available for all routes or, equivalently, that the ability 107 

of performing determined pathways is equally distributed across the microbial 108 

populations. This approach was termed as “Enzyme Soup” in opposition to 109 

compartmentalized approaches that model the different microorganisms separately and 110 

where the boundaries between community members play a role (Bauer & Thiele, 2018; 111 

Biggs, Medlock, Kolling, & Papin, 2015). The “Enzyme Soup” approach is appropriate 112 

for those systems in which there is limited a priori knowledge about the microbial 113 

consortia, such as MCF. Moreover, the communities of such systems are changing 114 

continuously (even when the system is at macroscopic steady state) as a result of 115 

function redundancy among the species and due to the supply of new microorganisms 116 

in the feeding (Carballa et al., 2015; Fernández et al., 1999). In our model, the emphasis 117 

is set on exploring the metabolic potential of complex microorganism consortia and not 118 

on the interactions between species or with the environment. 119 

✓ Substrate conversion can be limited when its consumption is not energetically feasible or 120 

beneficial to microorganisms. Contrary to glucose fermentation, in which the substrate is 121 

completely converted, protein conversion into VFA might be incomplete. Some AA may 122 

reach thermodynamic barriers and their degradation pathways result in endergonic 123 

reactions under typical intracellular conditions (e.g. see section 3.4 for the incomplete 124 

consumption of glycine). Experimental evidence indeed shows that it is frequent that 125 

proteins are not fully degraded in fermentations (Breure & van Andel, 1984; Breure, van 126 

Andel, Burger-Wiersma, Guijt, & Verkuijlen, 1985; Fang & Yu, 2002; Ramsay, 1997; Yin, 127 
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Yu, Wang, & Shen, 2016). Consequently, the model can choose to not consume specific 128 

AA completely or partially. Cells will not consume a particular AA if all degradation 129 

pathways are overall endergonic. Also, an AA could be not completely consumed even if 130 

its degradation is exergonic just because cells cannot conserve energy from its degradation. 131 

2.2 Solution strategy 132 

The different terms of the balances are determined following the flowchart of Fig. 1. The 133 

initial state values and the feeding properties (flow rate and state concentrations) are the 134 

initial inputs of the model. Firstly, the thermodynamic limitation factor is calculated with the 135 

current state values (Thermodynamic limitation step). In the reaction selection step, the different 136 

degradation pathways of the different AA are first evaluated and then selected by an 137 

optimisation procedure (Eq. 1-4). The reaction evaluation step is divided into several 138 

substeps: determination of the reaction rates (Kinetics), of the associated transport rates 139 

(Transport) and of the ATP production rate by proton translocations and active transport 140 

(Energetics). First these tasks are evaluated assuming that each of the AAs is totally converted 141 

through each of their possible conversion pathways (Reation selection step). Secondly, the 142 

optimal set of reactions is selected in the Optimisation step. Then, the Kinetics, Transport and 143 

Energetics substeps are repeated with the set of reactions deemed as optimal in the 144 

optimisation program. Finally, the mass balances (Eq. S1-S4) are determined and the steady 145 

state condition is evaluated. If it is not yet reached, the state values are updated following a 146 

pseudo-time stepping solution procedure, and a new iteration begins. More information 147 

about how each term is modelled can be found in Supporting Information Section B-G. 148 

Figure 1 149 

The objective function aims to maximise ATP production from the substrate. This 150 

reflects the hypothesis that the microorganisms capable of harvesting as much energy as 151 

possible from the substrate are dominant in an anaerobic mixed microbial community. The 152 
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net ATP production includes the ATP formed by substrate-level phosphorylation (SLP), the 153 

ATP gained through proton translocations and the ATP spent in the active transport of 154 

compounds (Supporting Information section G). 155 

Model constraints are related with electron carrier conservation: NADH production 156 

and consumption must be balanced within the catabolism because there is no external 157 

electron acceptor that could act as an electron sink (Supporting Information section H). 158 

Thus, the optimisation problem to be solved can be expressed as follows (Eq. 1-4): 159 

max
𝑧

 𝑟𝐴𝑇𝑃(𝑧) (mol ATP/Lx·h) (1)  

 rNADH (z) = 0 (mol NADH/Lx·h) (2) 

 0≤zi,j≤1  (3) 

 
∑ 𝑧𝑖,𝑗 = 1

𝑗

,   𝑖 = 1, … , 𝑛𝐴𝐴 
(4) 

Where: rATP and rNADH are the global ATP and NADH production rates, respectively and zi,j 160 

are the elements of the matrix of decision variables. They represent the yield of the different 161 

metabolic branches of AA. Concretely, zi,j is the yield of the metabolic branch i of the jth AA 162 

and varies continuously between 0 and 1. For each of the AA there is a null reaction available.  163 

The model of the reactor was solved to steady state as a system of 68 nonlinear 164 

algebraic equations. A commonly encountered problem in the solution of moderately large 165 

nonlinear algebraic systems is that they tend to get stuck in local solutions or be driven to 166 

infeasible states (e.g. negative concentrations). To prevent these issues, we used pseudo-time 167 

stepping as heuristic solving method as previously reported by Ceze and Fidkowski (2015), 168 

whereby the algebraic system of equations is formulated as a system of ODEs. This system of 169 

ODEs was solved until steady state by Matlab command ode15s.  Steady state was assumed 170 

when all the state absolute derivatives values were under 1e-6 mol L-1 h-1. 171 
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Although based in FBA strategies, our approach differs in how internal 172 

concentrations are assumed. Usually in FBA, measured internal concentration values at 173 

steady state are used or determined by heuristic (i.e. most probable values based on maximum 174 

compatible metabolic concentration, energetics, etc.) (R Kleerebezem, Rodriguez, Temudo, 175 

& van Loosdrecht, 2008; Rodriguez et al., 2006; Zhang, Zhang, Chen, van Loosdrecht, & 176 

Zeng, 2013). This assumption limits the influence of environmental conditions on the 177 

product spectrum because it fixes intracellular concentrations to a set value. However, our 178 

goal focuses particularly on studying how environmental conditions are linked to the 179 

intracellular environment and vice versa, in particular by the effect on the energetic cost of 180 

transport of products and pH regulation (i.e. how the reactor conditions affect microbial 181 

metabolism and how microbial metabolism affects in turn the reactor conditions).  182 

3. RESULTS AND DISCUSSION 183 

3.1 Metabolic network construction 184 

Considerations regarding common features such as electron carriers or common intermediates 185 

conversion pathways (e.g. pyruvate) are discussed in detail in section H of the Supporting 186 

Information. Decay products, in particular, glucose, are also modelled in the network even 187 

though absent from the feed (see Supporting Information Section E). Glucose degradation 188 

pathways are discussed in detail in a previous contribution (Regueira, González-Cabaleiro, 189 

Ofiţeru, Rodríguez, & Lema, 2018). 190 

3.1.1 Amino acid degradation pathways 191 

The metabolic network used in the model is formed by the degradation pathways of 17 AA: 192 

alanine, arginine, asparagine, aspartate, cysteine, glutamate, glutamine, glycine, histidine, 193 

isoleucine, leucine, lysine, methionine, proline, serine, threonine and valine. AA containing 194 

aromatic side chains were not included in the metabolic network (phenylalanine, tyrosine and 195 

tryptophan) since they yield aromatic compounds that are not further degraded in fermentative 196 
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environments and that are usually not measured, such as phenyl acetic acid, benzoic acid or 197 

toluene (Hecht, Bieler, & Griehl, 2005; Russell et al., 2013; Widdel & Rabus, 2001). Moreover,  198 

their degradation pathways (Andreesen, Bahl, & Gottschalk, 1989; Barker, D’Ari, & Kahn, 199 

1987) or the reaction mechanisms and energetics (Fuchs, Boll, & Heider, 2011) are still not 200 

sufficiently clear on literature. Besides, these AA do not account for more than 10% (molar 201 

basis) in the usual proteins found in wastes (9.2% in casein, 9.4% in gelatine, 8.8% in albumin, 202 

7.4% in gluten, 3.7% in keratin and 6.9% in zein). The products covered in this metabolic 203 

network are volatile fatty acids (VFA) from C1 to C6, ethanol, CO2 and H2. Butyrate and 204 

valerate are present in both their linear and branched form and in the case of caproate only the 205 

branched appears as a product. In Table 1 the considered end products of the conversion of 206 

the different AA are shown. Most of the routes were adapted from Andreesen et al. (1989), 207 

Barker (1981) and Fonknechten et al. (2010). The detailed pathways of these conversions can 208 

be found in section L of the Supporting Information.  209 

Table 1 210 

3.2 Exploring experimental results and their limitations  211 

Most protein fermentation studies available in literature use gelatine as a substrate, due to its 212 

presence in agro-industrial wastes (e.g. slaughterhouse and meat-processing wastewater) 213 

(Breure, Beeftink, et al., 1986; Breure, Mooijman, et al., 1986; Breure & van Andel, 1984; Breure 214 

et al., 1985; Fang & Yu, 2002; Yu & Fang, 2003). We selected a set of works from Breure and 215 

co-workers (hereafter Breure experiments) regarding gelatine degradation in CSTR as the best 216 

example of experimental results available in literature (Table 2). Other available data were 217 

discarded due to the suspicion that methane could have been produced as hinted by COD 218 

balances. If methanogenesis is not completely inhibited it would alter the product distribution 219 

as methane production has a net consumption of reducing equivalents. 220 

Table 2 221 
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The VFA yields reported in the different Breure experiments are overall of good 222 

quality and consistent (Fig. 2 shows yields of the experiments at pH 7). The product order 223 

in terms of the yield value is almost identical for the different data sets and the variability of 224 

the product yields is generally acceptable. The yields of acetate, propionate and the isoacids 225 

have coefficients of variation (CV) of 25% or below. On the contrary, n-butyrate and n-226 

valerate yields present a high CV (56% and 44%, respectively). Although the different data 227 

sets differ in the dilution rate and the inlet protein concentration, the variations on VFA 228 

yields do not follow any tendency with these parameters. 229 

Nevertheless, even good quality data are not completely insightful when it comes to 230 

understand the process of protein fermentation as there are questions that are hard to clarify 231 

with just experimental information. For instance, when protein consumption is not 232 

complete, are in this case some AA consumed preferentially or are all of them equally 233 

consumed? Moreover, experimental data cannot be extrapolated to other operational 234 

conditions than the tested or to other substrates, limiting thus significantly their application 235 

for process design. On the contrary, mechanistic models enable us to have detailed 236 

knowledge of the mechanisms taking place and therefore they allow extrapolation as we can 237 

modify all the defined environmental conditions. 238 

Fig. 2 239 

3.3 Definition of substrate as model input 240 

Gelatine AA composition varies moderately depending on the origin. In Fig. 3 the average 241 

composition and the standard deviation in terms of AA of 9 different profiles in the data 242 

base of the National Centre for Biotechnology Information are shown (“National Center for 243 

Biotechnology Information,” 2019). The AA profile of the protein is one of the main inputs 244 

of the model and its outcome is directly correlated with the relative concentration of the 245 

different AA.  A consequence of this variability is that the origin of the gelatine used in the 246 
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literature experiments could determine to an extent the observed product yields. For 247 

example, proline is the only AA that usually yields n-valerate, but its relative concentration 248 

in Fig. 3 has a CV of 41.2%, indicating that the characteristics of the specific gelatine selected 249 

as substrate will significantly affect the n-valerate yield. 250 

Figure 3 251 

Unfortunately, the gelatine composition on AA is not reported in Breure experiments 252 

and therefore our modelling initial conditions are not fully defined. To fill this knowledge 253 

gap, we had to make an assumption regarding the AA profile of the simulation feeding. The 254 

model was run at pH 7 for each of the 9 gelatine profiles mentioned above and the profile 255 

providing the best fit between the model and experimental results at that pH was chosen as 256 

our substrate (available in section M of the Supporting Information). To validate the model, 257 

we maintained that profile as our substrate in all the gelatine simulations presented in this 258 

work and we compare them with experimental data at different pH values.  259 

3.4 Simulation of continuous gelatine fermentation 260 

3.4.1. Effect of pH value on product yields 261 

One of the design parameters more easily manipulated and with a higher impact on product 262 

selectivity is pH. Furthermore, its effect has been studied extensively both from an 263 

experimental point of view in the case of sugars and proteins (Breure & van Andel, 1984; Fang 264 

& Liu, 2002; Temudo et al., 2007; Zoetemeyer, van den Heuvel, & Cohen, 1982) and from a 265 

modelling perspective in the case of glucose (González-Cabaleiro et al., 2015; Rodriguez et al., 266 

2006). Thus, a CSTR was simulated at pH values ranging from 4 to 9, with a dilution rate of 267 

0.12 h-1 and an inlet protein concentration of 7 g/L (mimicking experiment F in Table 2).  268 

Figure 4 269 
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VFA yields are only affected by pH in the acidic region, as increasing the pH from 6 270 

on does not have any relevant effect on selectivity (Fig. 4). In the acidic region, VFA yields are 271 

modified by pH in different ways: while the isoacid yields remain constant, n-valerate, 272 

propionate and especially acetate and n-butyrate yields change. For instance, n-butyrate yield 273 

triples when pH changes from 6 to 4.5 and acetate yield decreases by approximately 40% for 274 

the same pH drop. Protein conversion ranges from 85 to 94% and is maximum at neutral pH 275 

values. At acidic or basic pH values, the higher concentrations of non-ionised forms of VFA 276 

and ammonia, respectively, are an energetic burden for cells and limit their growth yield. These 277 

values should be interpreted only as the maximum possible values considering the 278 

thermodynamic and energetic constrictions at a certain set of conditions. 279 

 The information provided by the model simulations at different pH values is of great 280 

interest when aiming at designing a process. As the selectivity of the different VFA changes 281 

with pH, it is in principle possible to propose a process targeting a specific VFA with a high 282 

selectivity. Admittedly, there are boundaries to how much this parameter affects the selectivity 283 

(i.e. acetate is always one of the three major products). The use of predictive models can 284 

simulate the joint influence of pH with other design variables (e.g. HRT, substrate nature or 285 

concentration) and provide an integral tool for mixed-culture process design. 286 

3.4.2. Mechanistic insight 287 

This section focuses on the mechanistic information that can be obtained from the proposed 288 

model. In particular, we analyse the reasons of the model to select the different conversion 289 

pathways and why the stoichiometry is affected by the pH. Here we state the conclusions of 290 

a detailed analysis that can be found in section N of the Supporting Information. 291 

From the analysis it is observed that AA interact with each other and that the relative 292 

presence of one influences the fate of the others, rejecting thus hypothesis that the degradation 293 

stoichiometries of the different AA are independent, as proposed in a previous work (Ramsay 294 
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& Pullammanappallil, 2001). The most explicit interactions are those provoked by NADH 295 

competition as its consumption and production have to be equal (no external electron 296 

acceptor). Some pathways are in equilibrium with others in terms of ATP produced per 297 

NADH. In some cases, there are even some AA that are converted through pathways that 298 

consume ATP but produce NADH, which is used in high ATP-yield pathways, leading thus 299 

to a net ATP production. Consequently, a change in the relative concentration of some AA 300 

would affect the preferred conversion pathways of other AA as these interactions and energetic 301 

equilibriums would be modified. For example, if the abundance of AA that produce NADH 302 

(e.g. Val, Ile or Leu) was higher, it would affect the conversion pathway of AA that might 303 

consume NADH (e.g. Asp could yield more propionate or Glu more butyrate). Varying the 304 

pH modifies the energetics of some AA pathways, mainly due to the change in the energy 305 

associated with proton translocation (i.e. pmf). If the pH decreases the pmf value increases, 306 

favouring thus those pathways associated with proton translocations (Eq. S19 and Fig S8). This 307 

is the case of Glu conversion to n-butyrate, which has two proton translocations associated. 308 

At pH 7 it is completely degraded into acetate and when the pH is lower part of it yields n-309 

butyrate instead because this pathway yields more ATP (Fig. S8 and Table S4).  310 

3.5 Sources of uncertainty 311 

The formulation and use of this mathematical model require a number of hypotheses that 312 

are effectively sources of uncertainty, namely: 313 

• AA profile of the selected protein: As the exact AA composition depends on each 314 

specific protein, this uncertainty will be transferred to the VFA yields. To assess this 315 

uncertainty, we simulated the conversion of the 9 gelatine profiles of Fig. 3 at pH 5.3 316 

and 7 (Fig. 5). The rest of the conditions are equal to experiment F in Table 2. Acetate 317 

yield shows an acceptable CV value at both pH values (8.5% and 14.4% at pH 5.3 318 

and 7, respectively) when the minimum CV value for all the AA in Fig. 3 is 20%. As 319 



15 
 

many AAs have convergent pathways leading to the same products, the actual impact 320 

on certain VFA yields is decreased. Isocaproate, on the contrary, has a CV value of 321 

60.7%, which is a value much higher than the CV of Leu at pH 7 (27%), the only AA 322 

that can yield it, because isocaproate is only yielded with certain AA profiles and only 323 

at pH 7. Standard deviations values are similar for all VFA independently of the pH 324 

even for those which yield is highly affected by pH (e.g. n-butyrate). It should be also 325 

noted that n-butyrate yield is always higher at pH 5.3 than at pH 7 indicating that 326 

regardless of the selected AA profile, a decrease in pH always leads to an increase in 327 

n-butyrate yield.  However, it should be noted that this uncertainty source is only of 328 

concern when the model wants to be compared with experimental data that do not 329 

include the AA composition of the feeding. In a real design application, the AA 330 

concentrations in the substrates will be analysed to limit the uncertainty of this issue. 331 

Figure 5 332 

• Metabolic network: Some reported degradation pathways were not included because 333 

we did not consider them likely to occur in a fermentative environment. For example, 334 

some of them were reported in essays where microorganisms were only provided with 335 

an individual AA as carbon source. In this case, and to keep redox homeostasis (i.e. 336 

equal NADH consumption and production rates), Gly, for instance, was degraded 337 

partially to CO2 (Andreesen et al., 1989), as a way providing electron equivalents for its 338 

reduction to acetate. In this case, we decided not to include this pathway as it has not 339 

been observed in other literature works degrading Gly with other AA and because in 340 

the fermentation of a whole protein, the individual AA do not have to be NADH 341 

neutral with themselves. We did not include either some interconversions between AA 342 

(e.g. Glu to Pro) because these reactions appear not to be significant for AA catabolism 343 

(Jones, 1985; Saum & Müller, 2007). 344 
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• Uncertainty of the Gibbs formation energies (Gºf): Their values are used for calculating 345 

the Gibbs energy of all the possible reactions (ΔG’) and to determine the thermodynamic 346 

feasibility (see Supporting Information section B). The values for Gºf of some of the 347 

compounds, such as AA,  are calculated using the Group Contribution Method  because 348 

there is no avaliable experimental information available (Flamholz, Noor, Bar-Even, & 349 

Milo, 2012; Noor, Haraldsdóttir, Milo, & Fleming, 2013). In some cases, a degradation 350 

pathway is above the threshold of the minimum ΔG’ value (-2 kJ/mol) by a narrow 351 

margin, and therefore it cannot be selected by the model. In other cases, a reaction is 352 

slowed down because its ΔG’ value is very close to the minimum threshold. A variation 353 

of 1% in the value of Gºf would make the pathway exergonic and therefore eligible or 354 

increase the degradation rate of the reaction, respectively. 355 

• Reducing equivalents consumption in anabolism: NADH production or 356 

consumption in anabolism is not assessed in the NADH balance restriction. Proteins 357 

might have a different degree reduction than that of biomass and therefore globally 358 

produce or consume NADH in the anabolic reactions. However, due to low biomass 359 

yield values (0.03-0.05 C-mol biomass/C-mol protein) achieved in the simulations, 360 

this assumption is not likely to affect the output of the model. 361 

• Simplifications of cell-level mechanisms: For example, intracellular pH and membrane 362 

potential are assumed to be constant. However, cells could in occasions modify these 363 

physiological characteristic to cope with different external conditions (Booth, 1985; 364 

Padan, Zilberstein, & Schuldiner, 1981). The energetics of the degradation pathways 365 

would be in this case affected and could in turn modify the product spectrum. They 366 

were kept constant because any other model of intracellular pH would result in a more 367 

complex model structure while the predictive power would not be increased. Other 368 

example could be the fact that active transport of AA is considered to be energy neutral 369 
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in our model. Differences in the energy cost among the different AA could potentially 370 

modify their consumption pattern and affect the results of the model. However, 371 

simulations at steady state show that the energy associated with AA transport is small 372 

(between -1 kJ/mol and 4 kJ/mol) compared to the catabolic reactions and similar 373 

among the different AA. Therefore, the influence of AA transport energetics on the 374 

model solution is likely to be negligible. Moreover, in both examples the lack of 375 

information regarding both issues made us consider the simplistic option (constant 376 

intracellular pH and membrane potential and energy-free active AA transport) as the 377 

best solution.  378 

3.6 Model validation with literature results 379 

The model was validated using the Breure experiments (Table 2). The experimental VFA 380 

yields are represented in the x-axis of Fig. 6. Model results mimicking the operational 381 

conditions of the experiments from Table 2 are the y coordinate of Fig. 6. To better compare 382 

these data with the model results, the yield is referred to grams of protein hydrolysed, since 383 

the hydrolysis step is omitted in this model, (i.e. the simulated substrate is directly a mixture 384 

of free AA) but is not complete in the literature experiments. The line in Fig. 6 represents 385 

the equation y=x, a perfect match between the model and experimental data. Points that are 386 

to the right of this line are underestimated in the model and vice versa. 387 

3.6.1 Simulations at pH 7 388 

Butyrate is equally distributed around the line, which shows a very good agreement between 389 

the model prediction and the experiments. Acetate, propionate and n-valerate are to one or 390 

the other side of the line, meaning that are over or underestimated in the model. However, 391 

the dispersion of the experimental points, in these two cases, is bigger than the average 392 

deviation from the model, suggesting that incomplete knowledge of the substrate 393 

composition on AA and experimental deviations have a significant impact. For instance, the 394 
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average deviation for propionate is 0.05 g/g Prot and the experimental data range is 0.07 395 

mol/g Prot. Moreover, in the model n-valerate is considered only to be yielded by the 396 

degradation of Pro. This fact, together with the variability of the different gelatines (Section 397 

3.3) might indicate that the content in proline in the gelatine used in the model could be 398 

lower than the gelatine used in the experiments (n-Val yield values have a CV of 43% in Fig. 399 

6). In sum, given the dispersion observed inter experiments, the model satisfactorily 400 

reproduces the experimental data with an average root-square-mean deviation (RMSD, Eq. 401 

5) between the six model and experimental yield data sets of 0.6. 402 

𝑅𝑀𝑆𝐷 = √
1

𝑛
· ∑ (

𝑦̂𝑖 − 𝑦𝑖

𝑦𝑖 + 𝑦𝑖,𝑚𝑖𝑛
)

2𝑛

𝑖=1

 (5) 

Where n is the number of data pairs, 𝑦̂𝑖 is the model yield value, yi is the experimental yield 403 

value and yi,min is the minimum experimental yield value of the different VFA. If there happens 404 

to be an experimental yield value of zero, the next value in increasing order would be chosen 405 

as minimum experimental value.   406 

On average the model predicts a gelatine conversion of 92.4% in the six experiments 407 

simulated. This value is higher than the average of the values reported for the same experiments 408 

in literature (84.3%), but it should be kept in mind that this model can only consider the non-409 

complete consumption of an AA due to energetic or thermodynamic reasons without 410 

considering any specific limitation on substrate consumption (e.g. kinetic inhibition). 411 

3.6.2 Simulations at pH 5.3 412 

In the different Breure experiments only two of them (A and F) study the effect of 413 

pH and, in both cases, only acidic pH values were tested. In Fig. 6 the results at a pH value 414 

of 5.3 are represented too. Feeding characteristics vary on the data set A, in which the dilution 415 

rate is now 0.14 h-1. Protein conversion varies with pH both in model and experimental 416 
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results. Its value decreased 8% on average in the model while it did so in a 22% in the 417 

experimental data. But as previously stated, model conversion values should only be regarded 418 

as maximum possible conversion values. 419 

Figure 6 420 

Iso-butyrate, n-butyrate and isovalerate yields are overpredicted by the model, as in the 421 

results at pH 7 (for this comparison only the yellow and blue points should be considered). 422 

For its part, n-valerate maintains its behaviour and is underpredicted by the model as at pH 7 423 

but at pH 5.3 its experimental results have a smaller dispersion than at pH 7 and its predictions 424 

are slightly better. These four VFA have the same behaviour as at pH 7 (i.e. the same VFA are 425 

overpredicted and underpredicted), indicating that the discrepancies could be very well caused 426 

by differences between the AA profile of the gelatine modelled and the gelatine used in the 427 

experiments. Propionate shows an almost perfect fit but acetate, on the contrary, shows a 428 

worse fit. However, it is worth mentioning that there is a big difference between the two 429 

experimental data (acetate yield in F is 73% higher than the yield in A), while the difference in 430 

the other VFA between data sets is much more limited. The ability of the model to predict the 431 

changes in yields with the pH is of great interest too and it is an essential feature to be used as 432 

a product design tool. When compared with the experimental results, five out the six VFA 433 

follow the same tendency when changing the pH from 7 to 5.3, indicating that the model is 434 

also good in this role (Fig. S10 focuses on the changes in yields with pH). Acetate and n-valerate 435 

yields clearly decrease both in the experimental data (x-axis) and in the simulations (y-axis). The 436 

yields of n-butyrate at pH 5.3 are also in both cases higher than at pH 7 (only the blue and 437 

yellow points of n-butyrate at pH 7 should be considered). Iso-butyrate and iso-valerate yields 438 

seem not to be affected by pH in both the experimental and simulation data. 439 

The pH effect on the transport of the different AA should be also considered when 440 

simulating the metabolism of protein degraders. In literature, numerous works show how 441 
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transport mechanisms are influenced by extracellular conditions (e.g. pH or sodium 442 

concentration) in different microorganisms (Broer & kramer, 1990; Driessen, Kodde, De Jong, 443 

& Konings, 1987; Driessen, Van Leeuwen, & Konings, 1989; Excherichia, 1972; Krämer, 444 

Kanbert, Hoischen, & Ebbighausen, 1990; Poolman, Driessen, & Konings, 1987). Concerning 445 

the effect of a change in the extracellular pH, there is no agreement whether it increases or 446 

decreases the uptake rate of AA. For instance, Glu uptake rate is reported to be 3 times slower 447 

at pH 5 than at pH 7 in C. glutamicum (Krämer et al., 1990) and to be 15 times faster in S. cremoris 448 

(Poolman et al., 1987). As there is not a more consolidated mechanistic explanation on how 449 

pH affects AA uptake and why it seems to be dependent on the microorganisms (the modelled 450 

systems are dynamic mixed cultures), we decided to define uptake rates independent from the 451 

extracellular pH. This could be very well the reason why acetate yield decreases in a higher 452 

degree in the experimental data when the pH decreases, which is in accordance with the 453 

overpredicted acetate yields at pH 5.3 in Fig. 6. 454 

Compared to the previous work of Ramsay and Pullammanappallil (2001) the model 455 

selected different conversion pathways for 7 AA, representing 61.5% of all AA of the gelatine 456 

profile used in the simulations in molar basis (see section Q of the Supporting Information). 457 

4. USE AND IMPLICATIONS FOR PROCESS DESIGN 458 

The mathematical model developed provides an excellent means to carry out an early stage 459 

process design. It allows us to define design parameters, such as pH, that would steer the 460 

production towards those desired products, as already shown in previous sections. 461 

Furthermore, different wastes have different proteins with diverse AA compositions 462 

meaning that they will produce different outcomes. This variability source can also be 463 

exploited when designing the process. For example, if VFA production from casein is 464 

modelled instead of from gelatine, there are considerable changes in the product spectrum 465 

at a given pH and in the effect of pH on the VFA yields (Fig. 7). 466 
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i) At pH 7 casein shows a different product spectrum than gelatine. For example, 467 

propionate yield is 60% lower and now it is the fourth most abundant product 468 

when in gelatine degradation it is the second one (Fig. 4). Isocaproate, which is 469 

not a product of gelatine degradation, has in casein degradation a share of almost 470 

10% in the product spectrum. 471 

ii) A change in the pH value has a different effect in the degradation of casein than 472 

in gelatine degradation. A change in pH from 7 to 4.5 enhances significantly i-473 

valerate yield (+56%), becoming the second most abundant product. Isovalerate 474 

remained constant in gelatine degradation regardless of the pH value (Fig. 4). 475 

Figure 7 476 

This opens the possibility of choosing beforehand the most interesting waste and 477 

operational conditions depending on our targeted VFA. For instance, if we were interested in a 478 

process with a high selectivity for propionate, degrading gelatine at neutral pH would be our best 479 

choice. But if, on the contrary, we preferred a high butyrate yield, choosing a casein-rich waste at 480 

low pH would be a much better choice. If the number of proteins present in the different 481 

available wastes is high enough, we could go a step forward and tailor a blend of wastes that 482 

produced a particular AA profile that yielded a specific VFA spectrum when degraded. 483 

The model potential as a process design tool includes too the possibility of modifying 484 

synthetically the feeding. A specific AA could be added to the feeding to boost the process 485 

selectivity for a particular VFA. For example, if Thr was supplemented to the feeding it would 486 

be expected that the propionate yield increased as Thr only produces propionate (Fig. S11). 487 

Co-fermenting protein-rich wastes with others that have a high content in carbohydrates could 488 

be very well another strategy to allow for flexibility when seeking a particular product spectrum. 489 

Carbohydrates degradation is as well highly constrained by NADH conservation (Regueira et 490 
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al., 2018) and it is expected that proteins and carbohydrates product yields are modified when 491 

degraded together, as already shown experimentally (Breure, Mooijman, et al., 1986). 492 

5. CONCLUSIONS 493 

• A mechanistic metabolic model for the degradation of proteins by mixed cultures 494 

was developed and reproduces satisfactorily available literature experimental results 495 

at pH 7 and 5.3. Moreover, it can predict with a good level of accuracy the effect of 496 

lowering the pH value and, for the first time, offers a mechanistic explanation of the 497 

changes observed. 498 

• Protein degradation does not have a fixed stoichiometry. Changes in some operational 499 

conditions, such as pH, modify the preferred degradation pathways of different AA 500 

and consequently affect the product spectrum predicted by the model. It was also 501 

shown that amino acids might interact with each other and influence the degradation 502 

of others. Degradation reactions of different AA that both produce or consume 503 

NADH are an explicit example of this competition. Some AA might have different 504 

degradation products depending on the operational conditions or the interactions with 505 

other AA, but others can be described by constant degradation stoichiometry. 506 

However, the changes in product spectrum with the operational conditions are not as 507 

extreme as for glucose degradation, in which some end product might disappear from 508 

the product spectrum with a pH change of one unit (Temudo et al., 2007). 509 

•  Model validation was partially hindered by the variability of the experimental results 510 

and by the lack of knowledge regarding the AA composition of the degraded gelatine. 511 

Experiments expressly conceived to validate the mechanisms proposed in the model 512 

(e.g. knowing the protein AA profile and the individual AA concentrations in the 513 

outlet or measuring gaseous species concentrations) are needed to fully validate the 514 

model. For instance, some of the assumptions made during the construction of the 515 
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metabolic network could be proven (e.g. proton translocation in glutaconyl-CoA 516 

decarboxylation) or information regarding the impact of pH on AA uptake could be 517 

gathered for incorporation into the model. 518 

• This model, together with a standard kinetic mode, could be used as a tool for the 519 

early stage design of processes degrading proteins anaerobically by mixed cultures of 520 

microorganisms. As it offers mechanistic insight on the conversion processes of AA 521 

into VFA, we can now use this knowledge to design processes that have a high 522 

selectivity for the desired VFA. This utility of the model, as a process design tool, 523 

was further explored with several examples on how to drive the process towards a 524 

particular compound(s) of interest.  525 
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Tables 707 

Table 1. Summarized metabolic network. Fdred: Reduced ferredoxin; PT: proton 708 

translocation; 1: Uematsu et al. (2003); 2:Unden et al. (2013); 3: Loddeke et al. (2017); 4: 709 

Buckel (2001); 5: Buckel and Barker (1974); 6: Andreesen (1994); 7: Kreimeyer et al. (2007); 710 

8: Barker et al. (1987); 9: Sawers (1998); 10: Elsden and Hilton (1978); 11: Simon et al. 711 

(1985); 12: Bonnarme et al. (2001). 712 

Amino acid End products Comments Refs. 

Alanine (Ala) Pyruvate, NADH 
 

 

Arginine (Arg) 
Proline, ATP, CO2 Via ornithine  

Alanine, acetyl-CoA, ATP, 
NADH, CO2 

Via ornithine 1 

Aspartate (Asp) 

Pyruvate, NADH, CO2. Via oxaloacetate  

Succinate, NAD+ Via fumarate 2 

Propionate, NAD+, CO2. Via fumarate and succinate  

Cysteine (Cys) Pyruvate, H2S.  3 

Glutamate (Glu) 

Pyruvate + acetate  4, 5 

Butyrate, NAD+, CO2. Via glutaconyl-Coa and 
crotonyl-CoA. Two 
proton translocations 
considered. 

4, 5 

Glycine (Gly) Acetate, ATP, NAD+.  6 

Histidine (His) Glutamate, formamide.   

Lysine (Lys) Butyrate, acetate, ATP.  7 

Proline (Pro) ½ acetate, ½ propionate, ½ n-
valerate, ½ ATP, ½ NAD+.  

Via 5-aminovalerate 8 

Serine (Ser) Pyruvate, ATP.  9 

Threonine (Thr) Propionate, ATP, Fdred. Via 2-oxobutyrate 9 

 Glycine, acetyl-CoA, NADH. Via 2-amino-3-oxobutyrate 9 

Valine (Val) Isobutyrate, ATP, NADH, 
Fdred. 

 10 

Isoleucine (Ile) Isovalerate, ATP, NADH, 
Fdred. 

 10 

Leucine (Leu) 
Isovalerate, ATP, NADH, 
Fdred. 

Oxidative pathway 10 

Isocaproate, NAD+. Reductive pathway 11 

Methionine (Met) Propionate, methanethiol, 
ATP, Fdred. 

 12 

 Butyrate, methanethiol, 
NAD+. 

Either H2 production or a 
proton translocation is 
considered. 

12 

Glutamine (Gln) Glutamate   

Asparagine (Asn) Aspartate   

 713 

 714 

 715 
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Table 2. Breure experiments characteristics and notation. 716 

Denomination pH D (h-1) 

Inlet 

concentration 

(g/L) 

Reference 

A 5.3, 7 0.14, 0.23 7.5 (Breure & van Andel, 1984) 

B 7 0.1 5 
(Breure, Mooijman, et al., 

1986) 

C 7 0.15 5 
(Breure, Mooijman, et al., 

1986) 

D 7 0.2 5 
(Breure, Mooijman, et al., 

1986) 

E 7 0.2 5 
(Breure, Mooijman, et al., 

1986) 

F 5.3, 7 0.12 7 
(Breure, Beeftink, et al., 

1986) 

 717 

 718 

 719 

720 
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 721 

Fig. 1.  Workflow diagram for model solution 722 

 723 

724 
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Figure 2 725 

 726 

Fig. 2. VFA yields from gelatine-degrading Breure experiments at pH 7. Notation from 727 

Table 2 is followed: ■ A ■ B ■ C ■ D ■ E ■ F. 728 
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Figure 3 731 

 732 

Fig. 3. Average AA content of 9 different gelatine profiles (“National Center for 733 

Biotechnology Information,” 2019). 734 
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Figure 4 737 

 738 

Fig. 4. Model results (product yields) for gelatine degradation in an CSTR at different pH 739 

values. ■ acetate ■ propionate ■ n-butyrate ■ i-butyrate ■ n-valerate ■ i-valerate 740 
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Figure 5 743 

 744 

Fig. 5. Predicted VFA yields variability with 9 different AA profiles of gelatine from NCBI 745 

database. ■ Simulations at pH 5.3 ■ Simulations at pH 7. 746 
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Figure 6 749 

 750 

Fig. 6. Comparison between model results and literature experimental results. Open signs 751 

are related with results at pH 5.3. Colours represent the different Breure experiments as 752 

follows: (▬) A (▬) B (▬) C (▬) D (▬) E (▬) F. 753 
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755 
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Figure 7 756 

 757 

Fig. 7. Model results for casein degradation in an CSTR at different pH values. Product 758 

yields: ■ acetate ■ propionate ■ n-butyrate ■ i-butyrate ■ n-valerate ■ i-valerate ■ i-759 

caproate. 760 
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