123 research outputs found
Recommended from our members
Impaired β-glucocerebrosidase activity and processing in frontotemporal dementia due to progranulin mutations.
Loss-of-function mutations in progranulin (GRN) are a major autosomal dominant cause of frontotemporal dementia. Most pathogenic GRN mutations result in progranulin haploinsufficiency, which is thought to cause frontotemporal dementia in GRN mutation carriers. Progranulin haploinsufficiency may drive frontotemporal dementia pathogenesis by disrupting lysosomal function, as patients with GRN mutations on both alleles develop the lysosomal storage disorder neuronal ceroid lipofuscinosis, and frontotemporal dementia patients with GRN mutations (FTD-GRN) also accumulate lipofuscin. The specific lysosomal deficits caused by progranulin insufficiency remain unclear, but emerging data indicate that progranulin insufficiency may impair lysosomal sphingolipid-metabolizing enzymes. We investigated the effects of progranulin insufficiency on sphingolipid-metabolizing enzymes in the inferior frontal gyrus of FTD-GRN patients using fluorogenic activity assays, biochemical profiling of enzyme levels and posttranslational modifications, and quantitative neuropathology. Of the enzymes studied, only β-glucocerebrosidase exhibited impairment in FTD-GRN patients. Brains from FTD-GRN patients had lower activity than controls, which was associated with lower levels of mature β-glucocerebrosidase protein and accumulation of insoluble, incompletely glycosylated β-glucocerebrosidase. Immunostaining revealed loss of neuronal β-glucocerebrosidase in FTD-GRN patients. To investigate the effects of progranulin insufficiency on β-glucocerebrosidase outside of the context of neurodegeneration, we investigated β-glucocerebrosidase activity in progranulin-insufficient mice. Brains from Grn-/- mice had lower β-glucocerebrosidase activity than wild-type littermates, which was corrected by AAV-progranulin gene therapy. These data show that progranulin insufficiency impairs β-glucocerebrosidase activity in the brain. This effect is strongest in neurons and may be caused by impaired β-glucocerebrosidase processing
Pyrosequencing-based analysis reveals a novel capsular gene cluster in a KPC-producing Klebsiella pneumoniae clinical isolate identified in Brazil
Background: An important virulence factor of Klebsiella pneumoniae is the production of capsular polysaccharide (CPS), a thick mucus layer that allows for evasion of the host's defense and creates a barrier against antibacterial peptides. CPS production is driven mostly by the expression of genes located in a locus called cps, and the resulting structure is used to distinguish between different serotypes (K types). in this study, we report the unique genetic organization of the cps cluster from K. pneumoniae Kp13, a clinical isolate recovered during a large outbreak of nosocomial infections that occurred in a Brazilian teaching hospital.Results: A pyrosequencing-based approach showed that the cps region of Kp13 (cps(Kp13)) is 26.4 kbp in length and contains genes common, although not universal, to other strains, such as the rm/BADC operon that codes for L-rhamnose synthesis. cpsKp13 also presents some unique features, like the inversion of the wzy gene and a unique repertoire of glycosyltransferases. in silico comparison of cps(Kp13) RFLP pattern with 102 previously published cps PCR-RFLP patterns showed that cpsKp13 is distinct from the C patterns of all other K serotypes. Furthermore, in vitro serotyping showed only a weak reaction with capsular types K9 and K34. We confirm that K9 cps shares common genes with cps(Kp13) such as the rm/BADC operon, but lacks features like uge and Kp13-specific glycosyltransferases, while K34 capsules contain three of the five sugars that potentially form the Kp13 CPS.Conclusions: We report the first description of a cps cluster from a Brazilian clinical isolate of a KPC-producing K. pneumoniae. the gathered data including K-serotyping support that Kp13's K-antigen belongs to a novel capsular serotype. the CPS of Kp13 probably includes L-rhamnose and D-galacturonate in its structure, among other residues. Because genes involved in L-rhamnose biosynthesis are absent in humans, this pathway may represent potential targets for the development of antimicrobial agents. Studying the capsular serotypes of clinical isolates is of great importance for further development of vaccines and/or novel therapeutic agents. the distribution of K-types among multidrug-resistant isolates is unknown, but our findings may encourage scientists to perform K-antigen typing of KPC-producing strains worldwide.LNCC, Rio de Janeiro, BrazilUniv Fed Rio de Janeiro, Inst Microbiol Paulo de Goes, Rio de Janeiro, BrazilUniv Estadual Londrina, Dept Patol Clin Anal Clin & Toxicol, Londrina, BrazilUniversidade Federal de São Paulo, Lab ALERTA, Div Doencas Infecciosas, São Paulo, BrazilUniversidade Federal de São Paulo, Lab ALERTA, Div Doencas Infecciosas, São Paulo, BrazilWeb of Scienc
Rare Copy Number Variants in \u3cem\u3eNRXN1\u3c/em\u3e and \u3cem\u3eCNTN6\u3c/em\u3e Increase Risk for Tourette Syndrome
Tourette syndrome (TS) is a model neuropsychiatric disorder thought to arise from abnormal development and/or maintenance of cortico-striato-thalamo-cortical circuits. TS is highly heritable, but its underlying genetic causes are still elusive, and no genome-wide significant loci have been discovered to date. We analyzed a European ancestry sample of 2,434 TS cases and 4,093 ancestry-matched controls for rare (\u3c 1% frequency) copy-number variants (CNVs) using SNP microarray data. We observed an enrichment of global CNV burden that was prominent for large (\u3e 1 Mb), singleton events (OR = 2.28, 95% CI [1.39–3.79], p = 1.2 × 10−3) and known, pathogenic CNVs (OR = 3.03 [1.85–5.07], p = 1.5 × 10−5). We also identified two individual, genome-wide significant loci, each conferring a substantial increase in TS risk (NRXN1 deletions, OR = 20.3, 95% CI [2.6–156.2]; CNTN6 duplications, OR = 10.1, 95% CI [2.3–45.4]). Approximately 1% of TS cases carry one of these CNVs, indicating that rare structural variation contributes significantly to the genetic architecture of TS
Ancestral Origin of the ATTCT Repeat Expansion in Spinocerebellar Ataxia Type 10 (SCA10)
Spinocerebellar ataxia type 10 (SCA10) is an autosomal dominant neurodegenerative disease characterized by cerebellar ataxia and seizures. The disease is caused by a large ATTCT repeat expansion in the ATXN10 gene. The first families reported with SCA10 were of Mexican origin, but the disease was soon after described in Brazilian families of mixed Portuguese and Amerindian ancestry. The origin of the SCA10 expansion and a possible founder effect that would account for its geographical distribution have been the source of speculation over the last years. To unravel the mutational origin and spread of the SCA10 expansion, we performed an extensive haplotype study, using closely linked STR markers and intragenic SNPs, in families from Brazil and Mexico. Our results showed (1) a shared disease haplotype for all Brazilian and one of the Mexican families, and (2) closely-related haplotypes for the additional SCA10 Mexican families; (3) little or null genetic distance in small normal alleles of different repeat sizes, from the same SNP lineage, indicating that they are being originated by a single step mechanism; and (4) a shared haplotype for pure and interrupted expanded alleles, pointing to a gene conversion model for its generation. In conclusion, we show evidence for an ancestral common origin for SCA10 in Latin America, which might have arisen in an ancestral Amerindian population and later have been spread into the mixed populations of Mexico and Brazil
Identification of Genetic Factors that Modify Clinical Onset of Huntington’s Disease
SummaryAs a Mendelian neurodegenerative disorder, the genetic risk of Huntington’s disease (HD) is conferred entirely by an HTT CAG repeat expansion whose length is the primary determinant of the rate of pathogenesis leading to disease onset. To investigate the pathogenic process that precedes disease, we used genome-wide association (GWA) analysis to identify loci harboring genetic variations that alter the age at neurological onset of HD. A chromosome 15 locus displays two independent effects that accelerate or delay onset by 6.1 years and 1.4 years, respectively, whereas a chromosome 8 locus hastens onset by 1.6 years. Association at MLH1 and pathway analysis of the full GWA results support a role for DNA handling and repair mechanisms in altering the course of HD. Our findings demonstrate that HD disease modification in humans occurs in nature and offer a genetic route to identifying in-human validated therapeutic targets in this and other Mendelian disorders.PaperCli
Integrated genomics and proteomics define huntingtin CAG length-dependent networks in mice.
To gain insight into how mutant huntingtin (mHtt) CAG repeat length modifies Huntington's disease (HD) pathogenesis, we profiled mRNA in over 600 brain and peripheral tissue samples from HD knock-in mice with increasing CAG repeat lengths. We found repeat length-dependent transcriptional signatures to be prominent in the striatum, less so in cortex, and minimal in the liver. Coexpression network analyses revealed 13 striatal and 5 cortical modules that correlated highly with CAG length and age, and that were preserved in HD models and sometimes in patients. Top striatal modules implicated mHtt CAG length and age in graded impairment in the expression of identity genes for striatal medium spiny neurons and in dysregulation of cyclic AMP signaling, cell death and protocadherin genes. We used proteomics to confirm 790 genes and 5 striatal modules with CAG length-dependent dysregulation at the protein level, and validated 22 striatal module genes as modifiers of mHtt toxicities in vivo
Recommended from our members
Population stratification may bias analysis of PGC-1α as a modifier of age at Huntington disease motor onset
Huntington’s disease (HD) is an inherited neurodegenerative disorder characterized by motor, cognitive and behavioral disturbances, caused by the expansion of a CAG trinucleotide repeat in the HD gene. The CAG allele size is the major determinant of age at onset (AO) of motor symptoms, although the remaining variance in AO is highly heritable. The rs7665116 SNP in PPARGC1A, encoding the mitochondrial regulator PGC-1α, has been reported to be a significant modifier of AO in three European HD cohorts, perhaps due to affected cases from Italy. We attempted to replicate these findings in a large collection of (1,727) HD patient DNA samples of European origin. In the entire cohort, rs7665116 showed a significant effect in the dominant model (p value = 0.008) and the additive model (p value = 0.009). However, when examined by origin, cases of Southern European origin had an increased rs7665116 minor allele frequency (MAF), consistent with this being an ancestry-tagging SNP. The Southern European cases, despite similar mean CAG allele size, had a significantly older mean AO (p < 0.001), suggesting population-dependent phenotype stratification. When the generalized estimating equations models were adjusted for ancestry, the effect of the rs7665116 genotype on AO decreased dramatically. Our results do not support rs7665116 as a modifier of AO of motor symptoms, as we found evidence for a dramatic effect of phenotypic (AO) and genotypic (MAF) stratification among European cohorts that was not considered in previously reported association studies. A significantly older AO in Southern Europe may reflect population differences in genetic or environmental factors that warrant further investigation
Recommended from our members
Candidate glutamatergic and dopaminergic pathway gene variants do not influence Huntington’s disease motor onset
Huntington’s disease (HD) is a neurodegenerative disorder characterized by motor, cognitive, and behavioral disturbances. It is caused by the expansion of the HTT CAG repeat, which is the major determinant of age at onset (AO) of motor symptoms. Aberrant function of N-methyl-D-aspartate receptors and/or overexposure to dopamine has been suggested to cause significant neurotoxicity, contributing to HD pathogenesis. We used genetic association analysis in 1,628 HD patients to evaluate candidate polymorphisms in N-methyl-D-aspartate receptor subtype genes (GRIN2A rs4998386 and rs2650427, and GRIN2B rs1806201) and functional polymorphisms in genes in the dopamine pathway (DAT1 3′ UTR 40-bp variable number tandem repeat (VNTR), DRD4 exon 3 48-bp VNTR, DRD2 rs1800497, and COMT rs4608) as potential modifiers of the disease process. None of the seven polymorphisms tested was found to be associated with significant modification of motor AO, either in a dominant or additive model, after adjusting for ancestry. The results of this candidate-genetic study therefore do not provide strong evidence to support a modulatory role for these variations within glutamatergic and dopaminergic genes in the AO of HD motor manifestations
A perspetiva dos professores de educação especial sobre a importância da expressão dramática como técnica psicopedagógica no desenvolvimento da comunicação da criança com perturbação de Asperger
Os princípios pelos quais a escola inclusiva se rege defendem que os alunos não devem
apenas estar juntos, mas acima de tudo, devem aprender juntos, de forma a perceberem que
a escola é de todos e para todos, ainda que dentro das suas diferenças. Terá o professor
capacidades, conhecimentos e estratégias suficientes para abraçar este desafio?
Numa tentativa de aprofundarmos o nosso conhecimento acerca da Perturbação de
Asperger propomo-nos a desenvolver um trabalho que defina a doença, dentro do já então
conhecido, e evidencie tanto as “fragilidades” como as “capacidades” dos portadores,
carinhosamente apelidados de “Aspies”. Trata-se de uma tentativa de reunir os
conhecimentos necessários para começar a entender a essência dos Asperger. Porque é que
na opinião do psicólogo clínico Tony Attwood, especialista mundial nesta Perturbação,
precisamos de pessoas com Asperger, sugerindo que estes indivíduos possam ser, de
alguma forma, especiais e capazes de grandes feitos.
Neste sentido, surge este estudo para tentar perceber a perspetiva dos professores de
Educação Especial sobre a importância da Expressão Dramática como técnica
psicopedagógica no desenvolvimento da comunicação da criança com Perturbação de
Asperger. Pretendemos perceber a influência que a utilização desta técnica pode ter no
desenvolvimento comunicacional da criança com Perturbação de Asperger, pois talvez seja
relevante sugerir a elaboração de um programa de treino de competências comunicacionais
que utilize a Expressão Dramática.
A Expressão Dramática vai além do seu papel de ferramenta lúdica e de distração, daí a
importância de se conhecer as vantagens da sua utilização nesta área e tentar perceber se
pode contribuir ou não para o sucesso de uma criança com esta problemática
- …