94 research outputs found

    Muscle transcriptomic profiles in pigs with divergent phenotypes for fatness traits

    Get PDF
    Background: Selection for increasing intramuscular fat content would definitively improve the palatability and juiciness of pig meat as well as the sensorial and organoleptic properties of cured products. However, evidences obtained in human and model organisms suggest that high levels of intramuscular fat might alter muscle lipid and carbohydrate metabolism. We have analysed this issue by determining the transcriptomic profiles of Duroc pigs with divergent phenotypes for 13 fatness traits. The strong aptitude of Duroc pigs to have high levels of intramuscular fat makes them a valuable model to analyse the mechanisms that regulate muscle lipid metabolism, an issue with evident implications in the elucidation of the genetic basis of human metabolic diseases such as obesity and insulin resistance. Results: Muscle gene expression profiles of 68 Duroc pigs belonging to two groups (HIGH and LOW) with extreme phenotypes for lipid deposition and composition traits have been analysed. Microarray and quantitative PCR analysis showed that genes related to fatty acid uptake, lipogenesis and triacylglycerol synthesis were upregulated in the muscle tissue of HIGH pigs, which are fatter and have higher amounts of intramuscular fat than their LOW counterparts. Paradoxically, lipolytic genes also showed increased mRNA levels in the HIGH group suggesting the existence of a cycle where triacylglycerols are continuously synthesized and degraded. Several genes related to the insulin-signalling pathway, that is usually impaired in obese humans, were also upregulated. Finally, genes related to antigen-processing and presentation were downregulated in the HIGH group. Conclusion: Our data suggest that selection for increasing intramuscular fat content in pigs would lead to a shift but not a disruption of the metabolic homeostasis of muscle cells. Future studies on the post-translational changes affecting protein activity or expression as well as information about protein location within the cell would be needed to to elucidate the effects of lipid deposition on muscle metabolism in pigs

    A sequence variant in the diacylglycerol O-acyltransferase 2 gene influences palmitoleic acid content in pig muscle

    Get PDF
    Abstract The bulk of body fat in mammals is in the form of triacylglycerol. Diacylglycerol O-acyltransferase 2 (DGAT2) catalyses the terminal step in triacylglycerol synthesis. The proximity of DGAT2 with stearoyl-CoA desaturase (SCD) in the endoplasmic reticulum may facilitate provision of de novo SCD-mediated fatty acids as substrate for DGAT2. Here, we first searched for sequence variants in the DGAT2 gene to then validate their effect on fat content and fatty acid composition in muscle, subcutaneous fat and liver of 1129 Duroc pigs. A single nucleotide polymorphism in exon 9 (ss7315407085 G > A) was selected as a tag variant for the 33 sequence variants identified in the DGAT2 region. The DGAT2-G allele increased DGAT2 expression in muscle and had a positive impact on muscular C14 and C16 fatty acids at the expense of C18 fatty acids. Although there was no evidence for an interaction of DGAT2 with functional SCD genotypes, pigs carrying the DGAT2-G allele had proportionally more palmitoleic acid relative to palmitic acid. Our findings indicate that DGAT2 preferentially uptakes shorter rather than longer-chain fatty acids as substrate, especially if they are monounsaturated, and confirm that fatty acid metabolism in pigs is subjected to subtle tissue-specific genetic regulatory mechanisms

    Age evolution of lipid accretion rate in boars selected for lean meat and duroc barrows

    Get PDF
    Fatty acid (FA) deposition in growing-fattening pigs is mainly based on endogenous lipid synthesis, but also direct FA incorporation from the diet. To evaluate the direct fat incorporation rates and the endogenous desaturation action of the stearoyl‐CoA desaturase (SCD) enzyme, a deu‐ terium (D)‐labeled saturated FA (d 35‐C18:0) was added to the diet. Sixteen three‐way (3W) crossbred boars, and thirty‐two purebred Duroc barrows homozygous for the SCD single nucleotide poly‐ morphism rs80912566 (16 CC/16 TT), were used. Half of the animals of each genotype belonged to the growing and fattening phases. The fractional incorporation rate (FIR) of dietary fat in growing pigs was generally higher in adipose tissues, whereas in fattening pigs it was higher in the liver. Duroc pigs exhibited lower FIRs than 3W pigs, suggesting lower rates of endogenous synthesis by 3W pigs. Real fractional unsaturation rates (FURs) increased with age by the higher FIRs in 3W pigs and the de novo synthesis pathway in Duroc genotypes. Moreover, pigs carrying the SCD_T allele showed more enhanced oleic acid biosynthesis than Duroc CC pigs. In conclusion, suitable feeding protocols should be designed for each pig type to optimize production traits, considering that the metabolic pathway of FA for its deposition may differ.This study was a part of the Feed-a-Gene project and received funding from the EuropeanUnion’s H2020 program under National Institutes of Health (grant number 633531), as well as SpanishNational funding by the Ministry of Economy and Competitiveness (AGL2017-89289-R). L. Sarri isthe recipient of a research training grant from the Generalitat de Catalunya-European Social Funds(2019 FI_B 0041

    Mapping of quantitative trait loci for cholesterol, LDL, HDL and triglyceride serum concentrations in pigs

    Get PDF
    The fine mapping of polymorphisms influencing cholesterol (CT), triglyceride (TG), and lipoprotein serum levels in human and mouse has provided a wealth of knowledge about the complex genetic architecture of these traits. The extension of these genetic analyses to pigs would be of utmost importance since they constitute a valuable biological and clinical model for the study of coronary artery disease and myocardial infarction. In the present work, we performed a whole genome scan for serum lipid traits in a half-sib Duroc pig population of 350 individuals. Phenotypic registers included total CT, TG, and low (LDL)- and high (HDL)-density lipoprotein serum concentrations at 45 and 190 days of age. This approach allowed us to identify two genomewide significant quantitative trait loci (QTL) for HDL-to-LDL ratio at 45 days (SSC6, 84 cM) and for TG at 190 days (SSC4, 23 cM) as well as a number of chromosomewide significant QTL. The comparison of QTL locations at 45 and 190 days revealed a notable lack of concordance at these two time points, suggesting that the effects of these QTL are age specific. Moreover, we have observed a considerable level of correspondence among the locations of the most significant porcine lipid QTL and those identified in humans. This finding might suggest that, in mammals, diverse polymorphisms located in a common set of genes are involved in the genetic variation of serum lipid levels.The work was funded by Grants AGL2002-04271-C03 and AGL2007-66707-C02 (Ministerio de Educacion y Ciencia, Spain). D. Gallardo was funded with a fellowship from Universitat Autonoma de Barcelona. R. N. Pena received a contractual grant from Instituto Nacional de Investigacion Agropecuaria (Spain).Peer reviewe

    Segregation of Regulatory Polymorphisms with Effects on the Gluteus Medius Transcriptome in a Purebred Pig Population

    Get PDF
    Background: The main goal of the present study was to analyse the genetic architecture of mRNA expression in muscle, a tissue with an outmost economic importance for pig breeders. Previous studies have used F2 crosses to detect porcine expression QTL (eQTL), so they contributed with data that mostly represents the between-breed component of eQTL variation. Herewith, we have analysed eQTL segregation in an outbred Duroc population using two groups of animals with divergent fatness profiles. This approach is particularly suitable to analyse the within-breed component of eQTL variation, with a special emphasis on loci involved in lipid metabolism. Methodology/Principal Findings: GeneChip Porcine Genome arrays (Affymetrix) were used to determine the mRNA expression levels of gluteus medius samples from 105 Duroc barrows. A whole-genome eQTL scan was carried out with a panel of 116 microsatellites. Results allowed us to detect 613 genome-wide significant eQTL unevenly distributed across the pig genome. A clear predominance of trans- over cis-eQTL, was observed. Moreover, 11 trans-regulatory hotspots affecting the expression levels of four to 16 genes were identified. A Gene Ontology study showed that regulatory polymorphisms affected the expression of muscle development and lipid metabolism genes. A number of positional concordances between eQTL and lipid trait QTL were also found, whereas limited evidence of a linear relationship between muscle fat deposition and mRNA levels of eQTL regulated genes was obtained. Conclusions/Significance: Our data provide substantial evidence that there is a remarkable amount of within-breed genetic variation affecting muscle mRNA expression. Most of this variation acts in trans and influences biological processes related with muscle development, lipid deposition and energy balance. The identification of the underlying causal mutations and the ascertainment of their effects on phenotypes would allow gaining a fundamental perspective about how complex traits are built at the molecular level

    Genome-Wide Association Study Singles Out SCD and LEPR as the Two Main Loci Influencing Intramuscular Fat Content and Fatty Acid Composition in Duroc Pigs

    Get PDF
    [EN] Intramuscular fat (IMF) content and fatty acid composition affect the organoleptic quality and nutritional value of pork. A genome-wide association study was performed on 138 Duroc pigs genotyped with a 60k SNP chip to detect biologically relevant genomic variants influencing fat content and composition. Despite the limited sample size, the genome-wide association study was powerful enough to detect the association between fatty acid composition and a known haplotypic variant in SCD (SSC14) and to reveal an association of IMF and fatty acid composition in the LEPR region (SSC6). The association of LEPR was later validated with an independent set of 853 pigs using a candidate quantitative trait nucleotide. The SCD gene is responsible for the biosynthesis of oleic acid (C18:1) from stearic acid. This locus affected the stearic to oleic desaturation index (C18:1/C18:0), C18: 1, and saturated (SFA) and monounsaturated (MUFA) fatty acids content. These effects were consistently detected in gluteus medius, longissimus dorsi, and subcutaneous fat. The association of LEPR with fatty acid composition was detected only in muscle and was, at least in part, a consequence of its effect on IMF content, with increased IMF resulting in more SFA, less polyunsaturated fatty acids (PUFA), and greater SFA/PUFA ratio. Marker substitution effects estimated with a subset of 65 animals were used to predict the genomic estimated breeding values of 70 animals born 7 years later. Although predictions with the whole SNP chip information were in relatively high correlation with observed SFA, MUFA, and C18: 1/C18: 0 (0.48-0.60), IMF content and composition were in general better predicted by using only SNPs at the SCD and LEPR loci, in which case the correlation between predicted and observed values was in the range of 0.36 to 0.54 for all traits. Results indicate that markers in the SCD and LEPR genes can be useful to select for optimum fatty acid profiles of pork.This research was funded by the Spanish Ministry of Economy and Competitiveness (MINECO; grants AGL2012-33529 and AGL2015-65846-R).Ros-Freixedes, R.; Gol, S.; Pena, R.; Tor, M.; Ibañez Escriche, N.; Dekkers, J.; Estany, J. (2016). Genome-Wide Association Study Singles Out SCD and LEPR as the Two Main Loci Influencing Intramuscular Fat Content and Fatty Acid Composition in Duroc Pigs. PLoS ONE. 11(3). https://doi.org/10.1371/journal.pone.0152496S113Cameron, N. ., Enser, M., Nute, G. ., Whittington, F. ., Penman, J. ., Fisken, A. ., … Wood, J. . (2000). Genotype with nutrition interaction on fatty acid composition of intramuscular fat and the relationship with flavour of pig meat. Meat Science, 55(2), 187-195. doi:10.1016/s0309-1740(99)00142-4Christophersen, O. A., & Haug, A. (2011). Animal products, diseases and drugs: a plea for better integration between agricultural sciences, human nutrition and human pharmacology. Lipids in Health and Disease, 10(1), 16. doi:10.1186/1476-511x-10-16Ntawubizi, M., Colman, E., Janssens, S., Raes, K., Buys, N., & De Smet, S. (2010). Genetic parameters for intramuscular fatty acid composition and metabolism in pigs1. Journal of Animal Science, 88(4), 1286-1294. doi:10.2527/jas.2009-2355Ros-Freixedes, R., Reixach, J., Tor, M., & Estany, J. (2012). Expected genetic response for oleic acid content in pork1. Journal of Animal Science, 90(12), 4230-4238. doi:10.2527/jas.2011-5063Clop, A., Ovilo, C., Perez-Enciso, M., Cercos, A., Tomas, A., Fernandez, A., … Noguera, J. L. (2003). Detection of QTL affecting fatty acid composition in the pig. Mammalian Genome, 14(9), 650-656. doi:10.1007/s00335-002-2210-7Kim, Y., Kong, M., Nam, Y. J., & Lee, C. (2006). A Quantitative Trait Locus for Oleic Fatty Acid Content on Sus scrofa Chromosome 7. Journal of Heredity, 97(5), 535-537. doi:10.1093/jhered/esl026Sanchez, M.-P., Iannuccelli, N., Basso, B., Bidanel, J.-P., Billon, Y., Gandemer, G., … Le Roy, P. (2007). Identification of QTL with effects on intramuscular fat content and fatty acid composition in a Duroc × Large White cross. BMC Genetics, 8(1), 55. doi:10.1186/1471-2156-8-55Guo, T., Ren, J., Yang, K., Ma, J., Zhang, Z., & Huang, L. (2009). Quantitative trait loci for fatty acid composition in longissimus dorsi and abdominal fat: results from a White Duroc × Erhualian intercross F2population. Animal Genetics, 40(2), 185-191. doi:10.1111/j.1365-2052.2008.01819.xC.M. Dekkers, J. (2012). Application of Genomics Tools to Animal Breeding. Current Genomics, 13(3), 207-212. doi:10.2174/138920212800543057Uemoto, Y., Nakano, H., Kikuchi, T., Sato, S., Ishida, M., Shibata, T., … Suzuki, K. (2011). Fine mapping of porcine SSC14 QTL and SCD gene effects on fatty acid composition and melting point of fat in a Duroc purebred population. Animal Genetics, 43(2), 225-228. doi:10.1111/j.1365-2052.2011.02236.xUemoto, Y., Soma, Y., Sato, S., Ishida, M., Shibata, T., Kadowaki, H., … Suzuki, K. (2011). Genome-wide mapping for fatty acid composition and melting point of fat in a purebred Duroc pig population. Animal Genetics, 43(1), 27-34. doi:10.1111/j.1365-2052.2011.02218.xEstany, J., Ros-Freixedes, R., Tor, M., & Pena, R. N. (2014). A Functional Variant in the Stearoyl-CoA Desaturase Gene Promoter Enhances Fatty Acid Desaturation in Pork. PLoS ONE, 9(1), e86177. doi:10.1371/journal.pone.0086177Ramayo-Caldas, Y., Mercadé, A., Castelló, A., Yang, B., Rodríguez, C., Alves, E., … Folch, J. M. (2012). Genome-wide association study for intramuscular fatty acid composition in an Iberian × Landrace cross1. Journal of Animal Science, 90(9), 2883-2893. doi:10.2527/jas.2011-4900Muñoz, M., Rodríguez, M. C., Alves, E., Folch, J. M., Ibañez-Escriche, N., Silió, L., & Fernández, A. I. (2013). Genome-wide analysis of porcine backfat and intramuscular fat fatty acid composition using high-density genotyping and expression data. BMC Genomics, 14(1), 845. doi:10.1186/1471-2164-14-845Yang, B., Zhang, W., Zhang, Z., Fan, Y., Xie, X., Ai, H., … Ren, J. (2013). Genome-Wide Association Analyses for Fatty Acid Composition in Porcine Muscle and Abdominal Fat Tissues. PLoS ONE, 8(6), e65554. doi:10.1371/journal.pone.0065554Zhang, W., Zhang, J., Cui, L., Ma, J., Chen, C., Ai, H., … Yang, B. (2016). Genetic architecture of fatty acid composition in the longissimus dorsi muscle revealed by genome-wide association studies on diverse pig populations. Genetics Selection Evolution, 48(1). doi:10.1186/s12711-016-0184-2Kim, E.-S., Ros-Freixedes, R., Pena, R. N., Baas, T. J., Estany, J., & Rothschild, M. F. (2015). Identification of signatures of selection for intramuscular fat and backfat thickness in two Duroc populations1. Journal of Animal Science, 93(7), 3292-3302. doi:10.2527/jas.2015-8879Bosch, L., Tor, M., Reixach, J., & Estany, J. (2009). Estimating intramuscular fat content and fatty acid composition in live and post-mortem samples in pigs. Meat Science, 82(4), 432-437. doi:10.1016/j.meatsci.2009.02.013AOAC. 1997. Supplement to AOAC Official Method 996.06: Fat (total, saturated, and monounsaturated) in foods hydrolytic extraction gas chromatographic method. Page 18 in Official Methods of Analysis (16th ed). Association of Official Analytical Chemists, Arlington, VA.ÓVILO, C., FERNÁNDEZ, A., NOGUERA, J. L., BARRAGÁN, C., LETÓN, R., RODRÍGUEZ, C., … TORO, M. (2005). Fine mapping of porcine chromosome 6 QTL and LEPR effects on body composition in multiple generations of an Iberian by Landrace intercross. Genetical Research, 85(1), 57-67. doi:10.1017/s0016672305007330Amills, M., Villalba, D., Tor, M., Mercad, A., Gallardo, D., Cabrera, B., … Estany, J. (2008). Plasma leptin levels in pigs with different leptin and leptin receptor genotypes. Journal of Animal Breeding and Genetics, 125(4), 228-233. doi:10.1111/j.1439-0388.2007.00715.xPurcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A. R., Bender, D., … Sham, P. C. (2007). PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. The American Journal of Human Genetics, 81(3), 559-575. doi:10.1086/519795Bouwman, A. C., Janss, L. L., & Heuven, H. C. (2011). A Bayesian approach to detect QTL affecting a simulated binary and quantitative trait. BMC Proceedings, 5(S3). doi:10.1186/1753-6561-5-s3-s4Legarra, A., Croiseau, P., Sanchez, M., Teyssèdre, S., Sallé, G., Allais, S., … Elsen, J.-M. (2015). A comparison of methods for whole-genome QTL mapping using dense markers in four livestock species. Genetics Selection Evolution, 47(1), 6. doi:10.1186/s12711-015-0087-7Kass, R. E., & Raftery, A. E. (1995). Bayes Factors. Journal of the American Statistical Association, 90(430), 773-795. doi:10.1080/01621459.1995.10476572Barrett, J. C., Fry, B., Maller, J., & Daly, M. J. (2004). Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics, 21(2), 263-265. doi:10.1093/bioinformatics/bth457Wolc, A., Arango, J., Settar, P., Fulton, J. E., O’Sullivan, N. P., Preisinger, R., … Dekkers, J. C. M. (2012). Genome-wide association analysis and genetic architecture of egg weight and egg uniformity in layer chickens. Animal Genetics, 43, 87-96. doi:10.1111/j.1365-2052.2012.02381.xChen, E. Y., Tan, C. M., Kou, Y., Duan, Q., Wang, Z., Meirelles, G., … Ma’ayan, A. (2013). Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics, 14(1), 128. doi:10.1186/1471-2105-14-128Rabbit programme. 2012. Available from: http://www.dcam.upv.es/dcia/ablasco/Programas/THE%20PROGRAM%20Rabbit.pdfHu, Z.-L., Park, C. A., & Reecy, J. M. (2015). Developmental progress and current status of the Animal QTLdb. Nucleic Acids Research, 44(D1), D827-D833. doi:10.1093/nar/gkv1233Óvilo, C., Fernández, A., Fernández, A. I., Folch, J. M., Varona, L., Benítez, R., … Silió, L. (2010). Hypothalamic expression of porcine leptin receptor (LEPR), neuropeptide Y (NPY), and cocaine- and amphetamine-regulated transcript (CART) genes is influenced by LEPR genotype. Mammalian Genome, 21(11-12), 583-591. doi:10.1007/s00335-010-9307-1Muñoz, G., Alcázar, E., Fernández, A., Barragán, C., Carrasco, A., de Pedro, E., … Rodríguez, M. C. (2011). Effects of porcine MC4R and LEPR polymorphisms, gender and Duroc sire line on economic traits in Duroc×Iberian crossbred pigs. Meat Science, 88(1), 169-173. doi:10.1016/j.meatsci.2010.12.018Galve, A., Burgos, C., Silió, L., Varona, L., Rodríguez, C., Ovilo, C., & López-Buesa, P. (2012). The effects of leptin receptor (LEPR) and melanocortin-4 receptor (MC4R) polymorphisms on fat content, fat distribution and fat composition in a Duroc×Landrace/Large White cross. Livestock Science, 145(1-3), 145-152. doi:10.1016/j.livsci.2012.01.010UEMOTO, Y., KIKUCHI, T., NAKANO, H., SATO, S., SHIBATA, T., KADOWAKI, H., … SUZUKI, K. (2011). Effects of porcine leptin receptor gene polymorphisms on backfat thickness, fat area ratios by image analysis, and serum leptin concentrations in a Duroc purebred population. Animal Science Journal, 83(5), 375-385. doi:10.1111/j.1740-0929.2011.00963.xHirose, K., Ito, T., Fukawa, K., Arakawa, A., Mikawa, S., Hayashi, Y., & Tanaka, K. (2013). Evaluation of effects of multiple candidate genes (LEP,LEPR,MC4R,PIK3C3, andVRTN) on production traits in Duroc pigs. Animal Science Journal, 85(3), 198-206. doi:10.1111/asj.12134López-Buesa, P., Burgos, C., Galve, A., & Varona, L. (2013). Joint analysis of additive, dominant and first-order epistatic effects of four genes (IGF2,MC4R,PRKAG3andLEPR) with known effects on fat content and fat distribution in pigs. Animal Genetics, 45(1), 133-137. doi:10.1111/age.12091Mackowski, M., Szymoniak, K., Szydlowski, M., Kamyczek, M., Eckert, R., Rozycki, M., & Switonski, M. (2005). Missense mutations in exon 4 of the porcine LEPR gene encoding extracellular domain and their association with fatness traits. Animal Genetics, 36(2), 135-137. doi:10.1111/j.1365-2052.2005.01247.xLi, X., Kim, S.-W., Choi, J.-S., Lee, Y.-M., Lee, C.-K., Choi, B.-H., … Kim, K.-S. (2010). Investigation of porcine FABP3 and LEPR gene polymorphisms and mRNA expression for variation in intramuscular fat content. Molecular Biology Reports, 37(8), 3931-3939. doi:10.1007/s11033-010-0050-1Tyra, M., & Ropka-Molik, K. (2011). Effect of the FABP3 and LEPR gene polymorphisms and expression levels on intramuscular fat (IMF) content and fat cover degree in pigs. Livestock Science, 142(1-3), 114-120. doi:10.1016/j.livsci.2011.07.003Muraoka, O., Xu, B., Tsurumaki, T., Akira, S., Yamaguchi, T., & Higuchi, H. (2003). Leptin-induced transactivation of NPY gene promoter mediated by JAK1, JAK2 and STAT3 in the neural cell lines. Neurochemistry International, 42(7), 591-601. doi:10.1016/s0197-0186(02)00160-2Wood, J. D., Enser, M., Fisher, A. V., Nute, G. R., Sheard, P. R., Richardson, R. I., … Whittington, F. M. (2008). Fat deposition, fatty acid composition and meat quality: A review. Meat Science, 78(4), 343-358. doi:10.1016/j.meatsci.2007.07.019Clément, K., Vaisse, C., Lahlou, N., Cabrol, S., Pelloux, V., Cassuto, D., … Guy-Grand, B. (1998). A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction. Nature, 392(6674), 398-401. doi:10.1038/32911Dubern, B., & Clement, K. (2012). Leptin and leptin receptor-related monogenic obesity. Biochimie, 94(10), 2111-2115. doi:10.1016/j.biochi.2012.05.010Lim, K.-S., Kim, J.-M., Lee, E.-A., Choe, J.-H., & Hong, K.-C. (2014). A Candidate Single Nucleotide Polymorphism in the 3′ Untranslated Region of Stearoyl-CoA Desaturase Gene for Fatness Quality and the Gene Expression in Berkshire Pigs. Asian-Australasian Journal of Animal Sciences, 28(2), 151-157. doi:10.5713/ajas.14.0529Saatchi, M., Garrick, D. J., Tait, R. G., Mayes, M. S., Drewnoski, M., Schoonmaker, J., … Reecy, J. M. (2013). Genome-wide association and prediction of direct genomic breeding values for composition of fatty acids in Angus beef cattlea. BMC Genomics, 14(1). doi:10.1186/1471-2164-14-730Chen, L., Ekine-Dzivenu, C., Vinsky, M., Basarab, J., Aalhus, J., Dugan, M. E. R., … Li, C. (2015). Genome-wide association and genomic prediction of breeding values for fatty acid composition in subcutaneous adipose and longissimus lumborum muscle of beef cattle. BMC Genetics, 16(1). doi:10.1186/s12863-015-0290-
    corecore