58 research outputs found

    Cell Fusion Reprogramming Leads to a Specific Hepatic Expression Pattern during Mouse Bone Marrow Derived Hepatocyte Formation In Vivo

    Get PDF
    The fusion of bone marrow (BM) hematopoietic cells with hepatocytes to generate BM derived hepatocytes (BMDH) is a natural process, which is enhanced in damaged tissues. However, the reprogramming needed to generate BMDH and the identity of the resultant cells is essentially unknown. In a mouse model of chronic liver damage, here we identify a modification in the chromatin structure of the hematopoietic nucleus during BMDH formation, accompanied by the loss of the key hematopoietic transcription factor PU.1/Sfpi1 (SFFV proviral integration 1) and gain of the key hepatic transcriptional regulator HNF-1A homeobox A (HNF-1A/Hnf1a). Through genome-wide expression analysis of laser captured BMDH, a differential gene expression pattern was detected and the chromatin changes observed were confirmed at the level of chromatin regulator genes. Similarly, Tranforming Growth Factor-β1 (TGF-β1) and neurotransmitter (e.g. Prostaglandin E Receptor 4 [Ptger4]) pathway genes were over-expressed. In summary, in vivo BMDH generation is a process in which the hematopoietic cell nucleus changes its identity and acquires hepatic features. These BMDHs have their own cell identity characterized by an expression pattern different from hematopoietic cells or hepatocytes. The role of these BMDHs in the liver requires further investigation

    A novel prostate cell type-specific gene signature to interrogate prostate tumor differentiation status and monitor therapeutic response (running title: Phenotypic classification of prostate tumors)

    Get PDF
    In this study, we extracted prostate cell-specific gene sets (metagenes) to define the epithelial differentiation status of prostate cancers and, using a deconvolution-based strategy, interrogated thousands of primary and metastatic tumors in public gene profiling datasets. We identified a subgroup of primary prostate tumors with low luminal epithelial enrichment (LumElow). LumElow tumors were associated with higher Gleason score and mutational burden, reduced relapse-free and overall survival, and were more likely to progress to castration-resistant prostate cancer (CRPC). Using discriminant function analysis, we generate a predictive 10-gene classifier for clinical implementation. This mini-classifier predicted with high accuracy the luminal status in both primary tumors and CRPCs. Immunohistochemistry for COL4A1, a low- luminal marker, sustained the association of attenuated luminal phenotype with metastatic disease. We found also an association of LumE score with tumor phenotype in genetically engineered mouse models (GEMMs) of prostate cancer. Notably, the metagene approach led to the discovery of drugs that could revert the low luminal status in prostate cell lines and mouse models. This study describes a novel tool to dissect the intrinsic heterogeneity of prostate tumors and provide predictive information on clinical outcome and treatment response in experimental and clinical samples

    Generating new fanca-deficient hnscc cell lines by genomic editing recapitulates the cellular phenotypes of fanconi anemia

    Get PDF
    Fanconi anemia (FA) patients have an exacerbated risk of head and neck squamous cell carcinoma (HNSCC). Treatment is challenging as FA patients display enhanced toxicity to standard treatments, including radio/chemotherapy. Therefore, better therapies as well as new disease models are urgently needed. We have used CRISPR/Cas9 editing tools in order to interrupt the human FANCA gene by the generation of insertions/deletions (indels) in exon 4 in two cancer cell lines from sporadic HNSCC having no mutation in FA-genes: CAL27 and CAL33 cells. Our approach allowed efficient editing, subsequent purification of single-cell clones, and Sanger sequencing validation at the edited locus. Clones having frameshift indels in homozygosis did not express FANCA protein and were selected for further analysis. When compared with parental CAL27 and CAL33, FANCA-mutant cell clones displayed a FA-phenotype as they (i) are highly sensitive to DNA interstrand crosslink (ICL) agents such as mitomycin C (MMC) or cisplatin(ii) do not monoubiquitinate FANCD2 upon MMC treatment and therefore (iii) do not form FANCD2 nuclear foci, and (iv) they display increased chromosome fragility and G2 arrest after diepoxybutane (DEB) treatment. These FANCA-mutant clones display similar growth rates as their parental cells. Interestingly, mutant cells acquire phenotypes associated with more aggressive disease, such as increased migration in wound healing assays. Therefore, CAL27 and CAL33 cells with FANCA mutations are phenocopies of FA-HNSCC cells

    Development of a mouse model for spontaneous oral squamous cell carcinoma in Fanconi anemia

    Get PDF
    Altres ajuts: European Regional Development Fund (FEDER); the European Union; the Spanish Fundacion Anemia de Fanconi and Fanconi Anemia Research Fund USA; Comunidad de Madrid (ref PEJ-2019-TL_BMD-12905).Fanconi anemia (FA) patients frequently develop oral squamous cell carcinoma (OSCC). This cancer in FA patients is diagnosed within the first 3-4 decades of life, very often preceded by lesions that suffer a malignant transformation. In addition, they respond poorly to current treatments due to toxicity or multiple recurrences. Translational research on new chemopreventive agents and therapeutic strategies has been unsuccessful partly due to scarcity of disease models or failure to fully reproduce the disease. Here we report that Fanca gene knockout mice (Fanca ) frequently display pre-malignant lesions in the oral cavity. Moreover, when these animals were crossed with animals having conditional deletion of Trp53 gene in oral mucosa (K14cre;Trp53), they spontaneously developed OSCC with high penetrance and a median latency of less than ten months. Tumors were well differentiated and expressed markers of squamous differentiation, such as keratins K5 and K10. In conclusion, Fanca and Trp53 genes cooperate to suppress oral cancer in mice, and Fanca;K14cre;Trp53 mice constitute the first animal model of spontaneous OSCC in FA

    Prognosis Stratification Tools in Early-Stage Endometrial Cancer: Could We Improve Their Accuracy?

    Get PDF
    There are three prognostic stratification tools used for endometrial cancer: ESMO-ESGO-ESTRO 2016, ProMisE, and ESGO-ESTRO-ESP 2020. However, these methods are not sufficiently accurate to address prognosis. The aim of this study was to investigate whether the integration of molecular classification and other biomarkers could be used to improve the prognosis stratification in early-stage endometrial cancer. Relapse-free and overall survival of each classifier were analyzed, and the c-index was employed to assess accuracy. Other biomarkers were explored to improve the precision of risk classifiers. We analyzed 293 patients. A comparison between the three classifiers showed an improved accuracy in ESGO-ESTRO-ESP 2020 when RFS was evaluated (c-index = 0.78), although we did not find broad differences between intermediate prognostic groups. Prognosis of these patients was better stratified with the incorporation of CTNNB1 status to the 2020 classifier (c-index 0.81), with statistically significant and clinically relevant differences in 5-year RFS: 93.9% for low risk, 79.1% for intermediate merged group/CTNNB1 wild type, and 42.7% for high risk (including patients with CTNNB1 mutation). The incorporation of molecular classification in risk stratification resulted in better discriminatory capability, which could be improved even further with the addition of CTNNB1 mutational evaluation.Peer reviewe

    Prognosis Stratification Tools in Early-Stage Endometrial Cancer: Could We Improve Their Accuracy?

    Get PDF
    There are three prognostic stratification tools used for endometrial cancer: ESMO-ESGO-ESTRO 2016, ProMisE, and ESGO-ESTRO-ESP 2020. However, these methods are not sufficiently accurate to address prognosis. The aim of this study was to investigate whether the integration of molecular classification and other biomarkers could be used to improve the prognosis stratification in early-stage endometrial cancer. Relapse-free and overall survival of each classifier were analyzed, and the c-index was employed to assess accuracy. Other biomarkers were explored to improve the precision of risk classifiers. We analyzed 293 patients. A comparison between the three classifiers showed an improved accuracy in ESGO-ESTRO-ESP 2020 when RFS was evaluated (c-index = 0.78), although we did not find broad differences between intermediate prognostic groups. Prognosis of these patients was better stratified with the incorporation of CTNNB1 status to the 2020 classifier (c-index 0.81), with statistically significant and clinically relevant differences in 5-year RFS: 93.9% for low risk, 79.1% for intermediate merged group/CTNNB1 wild type, and 42.7% for high risk (including patients with CTNNB1 mutation). The incorporation of molecular classification in risk stratification resulted in better discriminatory capability, which could be improved even further with the addition of CTNNB1 mutational evaluation.Peer reviewe

    Prognosis Stratification Tools in Early-Stage Endometrial Cancer: Could We Improve Their Accuracy?

    Get PDF
    There are three prognostic stratification tools used for endometrial cancer: ESMO-ESGO-ESTRO 2016, ProMisE, and ESGO-ESTRO-ESP 2020. However, these methods are not sufficiently accurate to address prognosis. The aim of this study was to investigate whether the integration of molecular classification and other biomarkers could be used to improve the prognosis stratification in early-stage endometrial cancer. Relapse-free and overall survival of each classifier were analyzed, and the c-index was employed to assess accuracy. Other biomarkers were explored to improve the precision of risk classifiers. We analyzed 293 patients. A comparison between the three classifiers showed an improved accuracy in ESGO-ESTRO-ESP 2020 when RFS was evaluated (c-index = 0.78), although we did not find broad differences between intermediate prognostic groups. Prognosis of these patients was better stratified with the incorporation of CTNNB1 status to the 2020 classifier (c-index 0.81), with statistically significant and clinically relevant differences in 5-year RFS: 93.9% for low risk, 79.1% for intermediate merged group/CTNNB1 wild type, and 42.7% for high risk (including patients with CTNNB1 mutation). The incorporation of molecular classification in risk stratification resulted in better discriminatory capability, which could be improved even further with the addition of CTNNB1 mutational evaluation

    Complement component C4 structural variation and quantitative traits contribute to sex-biased vulnerability in systemic sclerosis

    Get PDF
    Altres ajuts: Fondo Europeo de Desarrollo Regional (FEDER), "A way of making Europe".Copy number (CN) polymorphisms of complement C4 play distinct roles in many conditions, including immune-mediated diseases. We investigated the association of C4 CN with systemic sclerosis (SSc) risk. Imputed total C4, C4A, C4B, and HERV-K CN were analyzed in 26,633 individuals and validated in an independent cohort. Our results showed that higher C4 CN confers protection to SSc, and deviations from CN parity of C4A and C4B augmented risk. The protection contributed per copy of C4A and C4B differed by sex. Stronger protection was afforded by C4A in men and by C4B in women. C4 CN correlated well with its gene expression and serum protein levels, and less C4 was detected for both in SSc patients. Conditioned analysis suggests that C4 genetics strongly contributes to the SSc association within the major histocompatibility complex locus and highlights classical alleles and amino acid variants of HLA-DRB1 and HLA-DPB1 as C4-independent signals
    corecore