7 research outputs found

    High gain CPW‐fed UWB planar monopole antenna‐based compact uniplanar frequency selective surface for microwave imaging

    Get PDF
    YesIn this article, a novel uniplanar ultra‐wideband (UWB) stop frequency selective surface (FSS) was miniaturized to maximize the gain of a compact UWB monopole antenna for microwave imaging applications. The single‐plane FSS unit cell size was only 0.095λ × 0.095λ for a lower‐operating frequency had been introduced, which was miniaturized by combining a square‐loop with a cross‐dipole on FR4 substrate. The proposed hexagonal antenna was printed on FR4 substrate with coplanar waveguide feed, which was further backed at 21.6 mm by 3 × 3 FSS array. The unit cell was modeled with an equivalent circuit, while the measured characteristics of fabricated FSS array and the antenna prototypes were validated with the simulation outcomes. The FSS displayed transmission magnitude below −10 dB and linear reflection phase over the bandwidth of 2.6 to 11.1 GHz. The proposed antenna prototype achieved excellent gain improvement about 3.5 dBi, unidirectional radiation, and bandwidth of 3.8 to 10.6 GHz. Exceptional agreements were observed between the simulation and the measured outcomes. Hence, a new UWB baggage scanner system was developed to assess the short distance imaging of simulated small metallic objects in handbag model. The system based on the proposed antenna displayed a higher resolution image than the antenna without FSS

    Mechanical and Thermal Evaluation of Carrageenan/Hydroxypropyl Methyl Cellulose Biocomposite Incorporated with Modified Starch Corroborated by Molecular Interaction Recognition

    Get PDF
    Vegetarian hard capsule has attracted surging demand as an alternative to gelatin; however, only few have been commercialized. Carrageenan extracted from seaweed has the potential to be utilized as a hard capsule material. Improving the mechanical and thermal properties of carrageenan biocomposite is therefore of great importance for future use in the drug delivery system. Hence, carboxymethyl sago starch (CMSS) was incorporated to strengthen the carrageenan biocomposite in a concentration range from 0 to 1.0% w/v. The intermolecular hydrogen bonding formed between carrageenan and CMSS was revealed via density functional theory (DFT) calculations and substantiated by 1H NMR and FTIR spectra. The result showed that the hydrogen bond is established between hydroxyl (carrageenan)–carbonyl (CMSS) groups at a distance of 1.87 Å. The bond formation subsequently increased the tensile strength of the biocomposite film and the loop strength of the hard capsule by 20.6 and 7.7%, respectively. The glass transition temperature of the film was increased from 37.8 to 47.8 °C, increasing the thermal stability. The activation energy upon decomposition of the film is 74.4 kJ·mol–1, representing a 26.2% increase over the control carrageenan. These findings demonstrate that incorporation of CMSS increases the properties of carrageenan biocomposite and provides a promising alternative to animal-based hard capsules

    Implementations of plane wave source for BoR-FDTD

    No full text
    International audienceThis paper presents the implementations of normal incident plane wave source for Body-of-Revolution Finite-Difference Time-Domain (BoR-FDTD) scheme. In order to generate the plane wave, the BoR-FDTD problem space is divided into two regions, the total field region and the scattered field region (TF/SF). An auxiliary one-dimensional BoR-FDTD is used as the source of the incident field for the TF/SF technique. First-order Mur absorbing boundary condition (ABC) is used to truncate the one-dimensional field into infinity. The technique is then validated for simulation of an axis-symmetry dielectric lens in receiving mode. © 2015 IEEE

    Hybrid computational scheme for antenna-human body interaction.

    Get PDF
    A new hybrid method of moments (MoM)/finite-difference time-domain (FDTD), with a sub-gridded finite-difference time-domain (SGFDTD) approach is presented. The method overcomes the drawbacks of homogeneous MoM and FDTD simulations, and so permits accurate analysis of realistic applications. As a demonstration, it is applied to the short-range interaction between an inhomogeneous human body and a small UHF RFID antenna tag, operating at 900 MHz. Near-field and far-field performance for the antenna are assessed for different placements over the body. The cumulative distribution function of the radiation efficiency and the absorbed power are presented and analyzed. The algorithm has a five-fold speed advantage over fine-gridded FDTD

    Hybrid computational scheme for antenna-human body interaction.

    No full text
    A new hybrid method of moments (MoM)/finite-difference time-domain (FDTD), with a sub-gridded finite-difference time-domain (SGFDTD) approach is presented. The method overcomes the drawbacks of homogeneous MoM and FDTD simulations, and so permits accurate analysis of realistic applications. As a demonstration, it is applied to the short-range interaction between an inhomogeneous human body and a small UHF RFID antenna tag, operating at 900 MHz. Near-field and far-field performance for the antenna are assessed for different placements over the body. The cumulative distribution function of the radiation efficiency and the absorbed power are presented and analyzed. The algorithm has a five-fold speed advantage over fine-gridded FDTD
    corecore