9,160 research outputs found
High Gain Amplifier with Enhanced Cascoded Compensation
A two-stage CMOS operational amplifier with both, gain-boosting and indirect current feedback frequency compensation performed by means of regulated cascode amplifiers, is presented. By using quasi-floating-gate transistors (QFGT) the supply requirements, the number of capacitors and the size of the compensation capacitors respect to other Miller schemes are reduced. A prototype was fabricated using a 0.5 μm technology, resulting, for a load of 45 pF and supply voltage of 1.65 V, in open-loop-gain of 129 dB, 23 MHz of gain-bandwidth product, 60o phase margin, 675 μW power consumption and 1% settling time of 28 ns
Theoretical and experimental SERS study of thiocarbonyl compounds adsorbed on metal nanoparticles
Thiocarbonyl compounds have been reported to exhibit interesting biological and pharmacological properties but they are many often characterized by their toxicological effects. However the chemistry of thiobenzoic acid (TBA) and thiobenzamide (TB) has not been fully studied yet. Some of the biological studies of TBA are related to the tautomerism of thiocarboxylic acids and the important role that the -C(=O)-S and -C(=S)-O functional groups play in the catalytic activities of enzymes such as cysteine or serine proteases.1
From a chemical point of view, thiocarboxylates are an interesting type of molecules having two different donor atoms, a soft sulfur donor atom and a hard oxygen donor one. The presence of these unlike groups can lead to the bonding with metal surfaces. Likewise the interaction of thiobenzamide and their derivatives with metals is of great interest because both the sulfur and nitrogen atoms are also able to coordinate with the surface. Therefore the high affinity of these molecules for metal surfaces makes them suitable SERS target adsorbates. Taking advantage of the fact that SERS spectroscopy is both surface selective and highly sensitive we have attempted to determine the molecular structure of TBA and TB once they are adsorbed on the metal. The main objective of this work is focussed on discussing the observed vibrational wavenumber shifts of TBA and TB upon adsorption on silver nanoparticles. In this work the SERS substrates have been prepared by using different colloidal silver solutions according to the method described by Creighton et al.2 and Leopold and Lendl.3
The analysis of the vibrational wavenumbers shifts of the Raman and SERS spectra allow us to know the adsorption process (Figure 1). In the case of TBA, the wavenumber of the SERS band assigned to (C=O) vibrational mode shows an important blue shift up to 40 cm-1 with respect to the Raman whereas the (C-S) band undergoes a red shift up to 40 cm-1. These results suggest a unidentate coordination of TBA to the silver surface through the sulfur atom.
On the other hand, the SERS band assigned in the case of TB to Amide III (mainly (CN)) exhibits a significant blueshift up to 41 cm-1, and the SERS band assigned to Amide I (mainly (CS)) shows a red shift up to 11 cm-1. These wavenumber shifts indicate that TB interacts to the silver surface through the sulfur atom. Interestingly, in previous SERS studies of pyridinecarboxamides and benzamide we have observed that some SERS bands assigned to 1;ring, Amide I (mainly (C=O)) and Amide III (mainly C-N)) show wavenumber shifts of +50, -50 and +10 cm-1, respectively, which were attributed to the deprotonation of carboxamide group.4,5
Finally, in order to verify experimental results DFT calculations have been carried out for different silver complexes of TBA and TB concluding that the unidentate coordination is the most likely interaction of both of them.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech
The State of the Circumstellar Medium Surrounding Gamma-Ray Burst Sources and its Effect on the Afterglow Appearance
We present a numerical investigation of the contribution of the presupernova
ejecta of Wolf-Rayet stars to the environment surrounding gamma-ray bursts
(GRBs), and describe how this external matter can affect the observable
afterglow characteristics. An implicit hydrodynamic calculation for massive
stellar evolution is used here to provide the inner boundary conditions for an
explicit hydrodynamical code to model the circumstellar gas dynamics. The
resulting properties of the circumstellar medium are then used to calculate the
deceleration of a relativistic, gas-dynamic jet and the corresponding afterglow
light curve produced as the shock wave propagates through the shocked-wind
medium. We find that variations in the stellar wind drive instabilities that
may produce radial filaments in the shocked-wind region. These comet-like tails
of clumps could give rise to strong temporal variations in the early afterglow
lightcurve. Afterglows may be expected to differ widely among themselves,
depending on the angular anisotropy of the jet and the properties of the
stellar progenitor; a wide diversity of behaviors may be the rule, rather than
the exception.Comment: 17 pages, 7 figures, ApJ in pres
Recommended from our members
Sustained release silk fibroin discs: Antibody and protein delivery for HIV prevention
With almost 2 million new HIV infections worldwide each year, the prevention of HIV infection is critical for stopping the pandemic. The only approved form of pre-exposure prophylaxis is a costly daily pill, and it is recognized that several options will be needed to provide protection to the various affected communities around the world. In particular, many at-risk people would benefit from a prevention method that is simple to use and does not require medical intervention or a strict daily regimen. We show that silk fibroin protein can be formulated into insertable discs that encapsulate either an antibody (IgG) or the potent HIV inhibitor 5P12-RANTES. Several formulations were studied, including silk layering, water vapor annealing and methanol treatment to stabilize the protein cargo and impact the release kinetics over weeks. In the case of IgG, high concentrations were released over a short time using methanol treatment, with more sustained results with the use of water vapor annealing and layering during device fabrication. For 5P12-RANTES, sustained release was obtained for 31 days using water vapor annealing. Further, we show that the released inhibitor 5P12-RANTES was functional both in vitro and in ex vivo colorectal tissue. This work shows that silk fibroin discs can be developed into formidable tools to prevent HIV infection
Interspecies DNA acquisition by a naturally competent Acinetobacter baumannii strain
The human pathogen Acinetobacter baumannii possesses high genetic plasticity and frequently acquires antimicrobial resistance genes. Here we investigated the role of natural transformation in these processes. Genomic DNA from different sources, including from carbapenem-resistant Klebsiella pneumoniae strains, was mixed with A. baumannii A118 cells. Selected transformants were analysed by whole-genome sequencing. In addition, bioinformatics analyses and in silico gene flow prediction were also performed to support the experimental results. Transformant strains included some that became resistant to carbapenems or changed their antimicrobial susceptibility profile. Foreign DNA acquisition was confirmed by whole-genome analysis. The acquired DNA most frequently identified corresponded to mobile genetic elements, antimicrobial resistance genes and operons involved in metabolism. Bioinformatics analyses and in silico gene flow prediction showed continued exchange of genetic material between A. baumannii and K. pneumoniae when they share the same habitat. Natural transformation plays an important role in the plasticity of A. baumannii and concomitantly in the emergence of multidrug-resistant strains.Fil: Traglia, German Matias. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Hospital de Clínicas General San Martín; ArgentinaFil: Place, Kori. California State University; Estados UnidosFil: Dotto, Cristian Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones en Microbiología y Parasitología Médica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en Microbiología y Parasitología Médica; ArgentinaFil: Fernandez, Jennifer. California State University; Estados UnidosFil: Montaña, Sabrina Daiana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones en Microbiología y Parasitología Médica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en Microbiología y Parasitología Médica; ArgentinaFil: Bahiense, Camila dos Santos. California State University; Estados UnidosFil: Soler Bistue, Alfonso J. C.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; ArgentinaFil: Iriarte, Andres. Universidad de la Republica. Facultad de Medicina; UruguayFil: Perez, Federico. Louis Stokes Cleveland Department Of Veterans Affairs; Estados UnidosFil: Tolmasky, Marcelo E.. California State University; Estados UnidosFil: Bonomo, Robert A.. Louis Stokes Cleveland Department Of Veterans Affairs; Estados UnidosFil: Melano, Roberto Gustavo. Public Health Ontario Laboratories; CanadáFil: Ramirez, Maria Soledad. California State University; Estados Unido
Transcriptome Metabolic Characterization of Tuber borchii SP1—A New Spanish Strain for In Vitro Studies of the Bianchetto Truffle
Truffles are ascomycete hypogeous fungi belonging to the Tuberaceae family of the Pezizales order that grow in ectomycorrhizal symbiosis with tree roots, and they are known for their peculiar aromas and flavors. The axenic culture of truffle mycelium is problematic because it is not possible in many cases, and the growth rate is meager when it is possible. This limitation has prompted searching and characterizing new strains that can be handled in laboratory conditions for basic and applied studies. In this work, a new strain of Tuber borchii (strain SP1) was isolated and cultured, and its transcriptome was analyzed under different in vitro culture conditions. The results showed that the highest growth of T. borchii SP1 was obtained using maltose-enriched cultures made with soft-agar and in static submerged cultures made at 22 °C. We analyzed the transcriptome of this strain cultured in different media to establish a framework for future comparative studies, paying particular attention to the central metabolic pathways, principal secondary metabolite gene clusters, and the genes involved in producing volatile aromatic compounds (VOCs). The results showed a transcription signal for around 80% of the annotated genes. In contrast, most of the transcription effort was concentrated on a limited number of genes (20% of genes account for 80% of the transcription), and the transcription profile of the central metabolism genes was similar in the different conditions analyzed. The gene expression profile suggests that T. borchii uses fermentative rather than respiratory metabolism in these cultures, even in aerobic conditions. Finally, there was a reduced expression of genes belonging to secondary metabolite clusters, whereas there was a significative transcription of those involved in producing volatile aromatic compounds
Organic Dairy Sheep Production Management
Organic production systems are based on natural processes, the use of local feed resources, and the maintenance of biodiversity in all senses. Several studies have noted the positive effects of organic sheep milk production systems on animal welfare, animal health, product quality, and environmental impact. On the other hand, it has been reported that dairy sheep organic farms show lower milk yields and increase the susceptibility to environmental impacts compared with conventional farms. The standards that regulate feeding management in organic systems are one of the most critical factors that influence milk production performance. Lower milk production is also associated with poor ability to adapt specialized dairy breeds to organic management, low genetic potential for milk production in native and local breeds, and elevated dependence on environmental conditions. However, the aim of organic dairy production is not to reach maximum dairy productivity but rather to integrate animal and crop production and to develop a symbiotic relationship between recyclable and renewable resources; furthermore, organic production positively affects the employment rate and quality of life in rural communities. Organic dairy sheep production is one means of improving the balance between society’s demand for food and the ecological impact of the agro-alimentary industry
- …