970 research outputs found
Recommended from our members
Sociodemographic and clinical characteristics of persons who experienced spontaneous hepatitis C viral clearance.
BackgroundIn the United States Hepatitis C virus (HCV) viral clearance is estimated to range between 20 and 30%. The objective of this study was to estimate the frequency of HCV clearance and identify correlates of viral clearance among patients newly identified as HCV antibody positive in a large urban health system in Los Angeles, California.MethodsWe identified patients between November 2015 and September 2017 as part of a newly implemented HCV screening and linkage-to-care program at University of California Los Angeles (UCLA) Health System. All patients were eligible for screening, though there were additional efforts to screen patients born between 1945 and 1965. We reviewed Medical records to categorize anti-HCV antibody positive patients as having spontaneously cleared HCV infection (HCV RNA not detected) or not (HCV RNA detected). We excluded those with a prior history of anti-HCV positivity or history of HCV treatment. We compared differences between those with and without detectable HCV RNA using chi-square test, Fisher's exact test, and t-test as appropriate. We assessed factors associated with HCV clearance using logistic regression analysis.ResultsAmong the 320 patients included in this study, 56% were male. Baby boomers (52-72 years of age) comprised the single largest age group (62%). We found spontaneous HCV clearance in 58% (n = 185). HCV viral clearance was slightly higher among women as compared to men (63% vs. 53%; p value = 0.07) and varied by race/ethnicity: clearance among Blacks/African Americans was 37% vs. 58% among whites (p value = 0.02). After adjusting for age, race/ethnicity, and sex we found that those diagnosed with chronic kidney disease had a tendency of decreased HCV viral clearance (adjusted OR = 0.34; 95% CI 0.14-1.03).ConclusionOf those patients newly identified as anti-HCV positive, 58% had cleared HCV virus, while the rest showed evidence of active infection. In addition, we found that clearance varied by race/ethnicity and clinical characteristics
Effectiveness of Ledipasvir/Sofosbuvir with/without Ribavarin in Liver Transplant Recipients with Hepatitis C.
Background and Aims: Recurrent infection of hepatitis C virus (HCV) in liver transplant (LT) recipients is universal and associated with significant morbidity and mortality. Methods: We retrospectively evaluated the safety and efficacy of ledipasvir/sofosbuvir with and without ribavirin in LT recipients with recurrent genotype 1 hepatitis C. Results: Eighty-five LT recipients were treated for recurrent HCV with ledipasvir/sofosbuvirwith and without ribavirin for 12 or 24 weeks. The mean (± standard deviation [SD]) time from LT to treatment initiation was 68 (±71) months. The mean (± SD) age of the cohort was 63 (±8.6) years old. Most recipients were male (70%). Baseline alanine transaminase, total bilirubin, and HCV ribonucleic acid (RNA) values (± SD) were 76.8 (±126) mg/dL, 0.8 (±1.3) U/L, and 8,010,421.9 (±12,420,985) IU/mL, respectively. Five of 43 recipients who were treated with ribavirin required drug cessation due to side effects, with 4 of those being anemia complications. No recipient discontinued the ledipasvir/sofosbuvir. Eighty-one percent of recipients had undetectable viral levels at 4 weeks after starting therapy, and all recipients had complete viral suppression at the end of therapy. The sustained viral response at 12 weeks after completion of therapy was 94%. Conclusion : Ledipasvir and sofosbuvir with and without ribavirin therapy is an effective and well-tolerated interferon-free treatment for recurrent HCV infection after LT. Anemia is not uncommon in LT recipients receiving ribavirin
Recommended from our members
In silico abstraction of zinc finger nuclease cleavage profiles reveals an expanded landscape of off-target sites
Gene-editing nucleases enable targeted modification of DNA sequences in living cells, thereby facilitating efficient knockout and precise editing of endogenous loci. Engineered nucleases also have the potential to introduce mutations at off-target sites of action. Such unintended alterations can confound interpretation of experiments and can have implications for development of therapeutic applications. Recently, two improved methods for identifying the off-target effects of zinc finger nucleases (ZFNs) were described–one using an in vitro cleavage site selection method and the other exploiting the insertion of integration-defective lentiviruses into nuclease-induced double-stranded DNA breaks. However, application of these two methods to a ZFN pair targeted to the human CCR5 gene led to identification of largely non-overlapping off-target sites, raising the possibility that additional off-target sites might exist. Here, we show that in silico abstraction of ZFN cleavage profiles obtained from in vitro cleavage site selections can greatly enhance the ability to identify potential off-target sites in human cells. Our improved method should enable more comprehensive profiling of ZFN specificities
Supramolecular binding and separation of hydrocarbons within a functionalised porous metal-organic framework
Supramolecular interactions are fundamental to host-guest binding in chemical and biological processes. Direct visualisation of such supramolecular interactions within host-guest systems is extremely challenging but crucial for the understanding of their function. We report a comprehensive study combining neutron scattering with synchrotron X-ray and neutron diffraction, coupled with computational modelling, to define the detailed binding at a molecular level of acetylene, ethylene and ethane within the porous host NOTT-300. This study reveals the simultaneous and cooperative hydrogen-bonding, π···π stacking interactions and inter-molecular dipole interactions in the binding of acetylene and ethylene to give up to twelve individual weak supramolecular interactions aligned within the host to form an optimal geometry for intelligent, selective binding of hydrocarbons. We also report, for the first time, the cooperative binding of a mixture of acetylene and ethylene within the porous host together with the corresponding breakthrough experiment and analysis of mixed gas adsorption isotherms
Pyrethroids and Nectar Toxins Have Subtle Effects on the Motor Function, Grooming and Wing Fanning Behaviour of Honeybees (Apis mellifera)
Sodium channels, found ubiquitously in animal muscle cells and neurons, are one of the main target sites of many naturally-occurring, insecticidal plant compounds and agricultural pesticides. Pyrethroids, derived from compounds found only in the Asteraceae, are particularly toxic to insects and have been successfully used as pesticides including on flowering crops that are visited by pollinators. Pyrethrins, from which they were derived, occur naturally in the nectar of some flowering plant species. We know relatively little about how such compounds—i.e., compounds that target sodium channels—influence pollinators at low or sub-lethal doses. Here, we exposed individual adult forager honeybees to several compounds that bind to sodium channels to identify whether these compounds affect motor function. Using an assay previously developed to identify the effect of drugs and toxins on individual bees, we investigated how acute exposure to 10 ng doses (1 ppm) of the pyrethroid insecticides (cyfluthrin, tau-fluvalinate, allethrin and permethrin) and the nectar toxins (aconitine and grayanotoxin I) affected honeybee locomotion, grooming and wing fanning behaviour. Bees exposed to these compounds spent more time upside down and fanning their wings. They also had longer bouts of standing still. Bees exposed to the nectar toxin, aconitine, and the pyrethroid, allethrin, also spent less time grooming their antennae. We also found that the concentration of the nectar toxin, grayanotoxin I (GTX), fed to bees affected the time spent upside down (i.e., failure to perform the righting reflex). Our data show that low doses of pyrethroids and other nectar toxins that target sodium channels mainly influence motor function through their effect on the righting reflex of adult worker honeybees
Partnering With Stakeholders to Inform the Co-Design of a Psychosocial Intervention for Prenatally Diagnosed Congenital Heart Disease
Input from diverse stakeholders is critical to the process of designing healthcare interventions. This study applied a novel mixed-methods, stakeholder-engaged approach to co-design a psychosocial intervention for mothers expecting a baby with congenital heart disease (CHD) and their partners to promote family wellbeing. The research team included parents and clinicians from 8 health systems. Participants were 41 diverse parents of children with prenatally diagnosed CHD across the 8 health systems. Qualitative data were collected through online crowdsourcing and quantitative data were collected through electronic surveys to inform intervention co-design. Phases of intervention co-design were: (I) Engage stakeholders in selection of intervention goals/outcomes; (II) Engage stakeholders in selection of intervention elements; (III) Obtain stakeholder input to increase intervention uptake/utility; (IV) Obtain stakeholder input on aspects of intervention design; and (V) Obtain stakeholder input on selection of outcome measures. Parent participants anticipated the resulting intervention, HEARTPrep, would be acceptable, useful, and feasible for parents expecting a baby with CHD. This model of intervention co-design could be used for the development of healthcare interventions across chronic diseases
Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas
This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing
molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin
Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas
Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN
Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context
Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts
Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images
Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images
of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL
maps are derived through computational staining using a convolutional neural network trained to
classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and
correlation with overall survival. TIL map structural patterns were grouped using standard
histopathological parameters. These patterns are enriched in particular T cell subpopulations
derived from molecular measures. TIL densities and spatial structure were differentially enriched
among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial
infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic
patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for
the TCGA image archives with insights into the tumor-immune microenvironment
- …