203 research outputs found

    Methyl 2,2-diphenyl-2-(prop-2-yn-1-yl­oxy)acetate

    Get PDF
    The mol­ecular structure of the title compound, C18H16O3, exhibits a new R 2–C(COOMe)(OCH2CCH) group. The C—O—C—C torsion angle is 153.3 (1)°. The dihedral angles are 79.89 (5)° between phen­yl/phenyl planes, and 73.13 (5) and 79.05 (8)° for the two COOMe/phenyl plane pairs

    Structural, thermodynamic, and local probe investigations of a honeycomb material Ag3_{3}LiMn2_{2}O6_{6}

    Full text link
    The system Ag[Li1/3_{1/3}Mn2/3_{2/3}]O2_{2} belongs to a quaternary 3R-delafossite family and crystallizes in a monoclinic symmetry with space group C2/mC\,2/m and the magnetic Mn4+^{4+}(S=3/2S=3/2) ions form a honeycomb network in the abab-plane. An anomaly around 50 K and the presence of antiferromagnetic (AFM) coupling (Curie-Weiss temperature θCW51\theta_{CW}\sim-51 K) were inferred from our magnetic susceptibility data. The magnetic specific heat clearly manifests the onset of magnetic ordering in the vicinity of 48\,K and the recovered magnetic entropy, above the ordering temperature, falls short of the expected value, implying the presence of short-range magnetic correlations. The (ESR) line broadening on approaching the ordering temperature TNT_{{\rm N}} could be described in terms of a Berezinski-Kosterlitz-Thouless (BKT) scenario with TKT=40(1)T_{{\rm KT}}=40(1) K. 7^{7}Li NMR line-shift probed as a function of temperature tracks the static susceptibility (Kiso_{iso}) of magnetically coupled Mn4+^{4+} ions. The 7^{7}Li spin-lattice relaxation rate (1/TT1_{1}) exhibits a sharp decrease below about 50 K. Combining our bulk and local probe measurements, we establish the presence of an ordered ground state for the honeycomb system Ag3_{3}LiMn2_{2}O6_{6}.Our ab-initio electronic structure calculations suggest that in the abab-plane, the nearest neighbor (NN) exchange interaction is strong and AFM, while the next NN and the third NN exchange interactions are FM and AFM respectively. In the absence of any frustration the system is expected to exhibit long-range, AFM order, in agreement with experiment.Comment: 11 pages, 13 figures, accepted in Phys Rev

    2-(2-Benzyl­phen­yl)propan-2-ol

    Get PDF
    There are two mol­ecules in the asymmetric unit of the title compound, C16H18O, a tertiary alcohol featuring a 2-benzyl­phenyl substituent. Co-operative O—H⋯O hydrogen bonds connect the mol­ecules into tetra­mers

    Unconventional magnetism in the 4d4^{4} based (S=1S=1) honeycomb system Ag3_{3}LiRu2_{2}O6_{6}

    Full text link
    We have investigated the thermodynamic and local magnetic properties of the Mott insulating system Ag3_{3}LiRu2_{2}O6_{6} containing Ru4+^{4+} (4dd4^{4}) for novel magnetism. The material crystallizes in a monoclinic C2/mC2/m structure with RuO6_{6} octahedra forming an edge-shared two-dimensional honeycomb lattice with limited stacking order along the cc-direction. The large negative Curie-Weiss temperature (θCW\theta_{CW} = -57 K) suggests antiferromagnetic interactions among Ru4+^{4+} ions though magnetic susceptibility and heat capacity show no indication of magnetic long-range order down to 1.8 K and 0.4 K, respectively. 7^{7}Li nuclear magnetic resonance (NMR) shift follows the bulk susceptibility between 120-300 K and levels off below 120 K. Together with a power-law behavior in the temperature dependent spin-lattice relaxation rate between 0.2 and 2 K, it suggest dynamic spin correlations with gapless excitations. Electronic structure calculations suggest an S=1S = 1 description of the Ru-moments and the possible importance of further neighbour interactions as also bi-quadratic and ring-exchange terms in determining the magnetic properties. Analysis of our μ\muSR data indicates spin freezing below 5 K but the spins remain on the borderline between static and dynamic magnetism even at 20 mK.Comment: 10 pages, 11 figures. accepted in Phys. Rev.

    Prospecting for alternate sources of shikimic acid, a precursor of Tamiflu, a bird-flu drug

    Get PDF
    Shikimic acid, more commonly known by its anionic form, shikimate, is an important intermediate compound of the ‘shikimate pathway’ in plants and microorganisms1. It is the principal precursor for the synthesis of aromatic amino acids,phenylalanine, tryptophan and tyrosine and other compounds such as alkaloids, phenolics and phenyl propanoids2. It is used extensively as a chiral building block for the synthesis of a number of compounds in both pharmaceutical and cosmetic industries3. In the recent past, the focus on shikimic acid has increased since it is the key precursor for the synthesis of Tamiflu, the only drug against avian flu caused by the H5N1 virus4,5. Shikimic acid is converted to a diethyl ketal intermediate, which is then reduced in two steps to an epoxide that is finally transformed to Tamiflu6

    Properties of the ferrimagnetic double-perovskite A_{2}FeReO_{6} (A=Ba and Ca)

    Get PDF
    Ceramics of A_{2}FeReO_{6} double-perovskite have been prepared and studied for A=Ba and Ca. Ba_{2}FeReO_{6} has a cubic structure (Fm3m) with aa\approx 8.0854(1) \AA whereas Ca_{2}FeReO_{6} has a distorted monoclinic symmetry with a5.396(1)A˚,b5.522(1)A˚,c7.688(2)A˚a\approx 5.396(1) \AA, b\approx 5.522(1) \AA, c\approx 7.688(2) \AA and β=90.4(P21/n)\beta =90.4^{\circ} (P21/n). The barium compound is metallic from 5 K to 385 K, i.e. no metal-insulator transition has been seen up to 385 K, and the calcium compound is semiconducting from 5 K to 385 K. Magnetization measurements show a ferrimagnetic behavior for both materials, with T_{c}=315 K for Ba_{2}FeReO_{6} and above 385 K for Ca_{2}FeReO_{6}. A specific heat measurement on the barium compound gave an electron density of states at the Fermi level, N(E_{F}) equal to 6.1×1024eV1mole1\times 10^{24} eV^{-1}mole^{-1}. At 5 K, we observed a negative magnetoresistance of 10 % in a magnetic field of 5 T, but only for Ba_{2}FeReO_{6}. Electrical, thermal and magnetic properties are discussed and compared to the analogous compounds Sr_{2}Fe(Mo,Re)O_{6}.Comment: 5 pages REVTeX, 7 figures included, submitted to PR

    Magnetic and electron transport properties of the rare-earth cobaltates, La0.7-xLnxCa0.3CoO3 (Ln = Pr, Nd, Gd and Dy) : A case of phase separation

    Full text link
    Magnetic and electrical properties of four series of rare earth cobaltates of the formula La0.7-xLnxCa0.3CoO3 with Ln = Pr, Nd, Gd and Dy have been investigated. Compositions close to x = 0.0 contain large ferromagnetic clusters or domains, and show Brillouin-like behaviour of the field-cooled DC magnetization data with fairly high ferromagnetic Tc values, besides low electrical resistivities with near-zero temperature coefficients. The zero-field-cooled data generally show a non-monotonic behaviour with a peak at a temperatures slightly lower than Tc. The near x = 0.0 compositions show a prominent peak corresponding to the Tc in the AC-susceptibility data. The ferromagnetic Tc varies linearly with x or the average radius of the A-site cations, (rA). With increase in x or decrease in (rA), the magnetization value at any given temperature decreases markedly and the AC-susceptibility measurements show a prominent transition arising from small magnetic clusters with some characteristics of a spin-glass. Electrical resistivity increases with increase in x, showed a significant increase around a critical value of x or (rA), at which composition the small clusters also begin to dominate. These properties can be understood in terms of a phase separation scenario wherein large magnetic clusters give way to smaller ones with increase in x, with both types of clusters being present in certain compositions. The changes in magnetic and electrical properties occur parallely since the large ferromagnetic clusters are hole-rich and the small clusters are hole-poor. Variable-range hopping seems to occur at low temperatures in these cobaltates.Comment: 23 pages including figure

    Etoricoxibium picrate

    Get PDF
    In the cation of the title salt (systematic name: 5-{5-chloro-3-[4-(methyl­sulfon­yl)phen­yl]-2-pyrid­yl}-2-methyl­pyridinium 2,4,6-trinitro­phenolate), C18H16ClN2O2S+·C6H2N3O7 −, the mean planes of the two pyridine rings in the bipyridine unit are twisted by 33.9 (2)° with respect to each other. The dihedral angles between the mean planes of the sulfonyl­benzene ring and the chloro­pyridine and methyl­pyridine rings are 51.2 (0) and 49.3 (9)°, respectively. The picrate anion inter­acts with the protonated N atom through a bifurcated N—H⋯(O,O) hydrogen bond, forming an R 1 2(6) ring motif with the N atom from the methyl­pyridine group of an adjacent cation. N—H⋯O hydrogen bonds, weak C—H⋯O and π–π stacking inter­actions [centroid–centroid distances = 3.8192 (9)and 3.6749 (9)] occur in the crystal packing, creating a two-dimensional network structure along [110]

    3,3-Dimethyl-2-benzofuran-1(3H)-one

    Get PDF
    In the title compound, C10H10O2, all the non-H atoms except the methyl C atoms lie on a crystallographic mirror plane. In the crystal, C—H⋯O hydrogen bonds link the mol­ecules into zigzag chains running parallel to [100]. Weak π–π stacking inter­actions between the benzene rings [centroid–centroid distance = 3.9817 (5) Å] link the chains in the [010] direction
    corecore