70 research outputs found

    Remote sensing of ecosystem light use efficiency with MODIS-based PRI

    Get PDF
    Several studies sustained the possibility that a photochemical reflectance index (PRI) directly obtained from satellite data can be used as a proxy for ecosystem light use efficiency (LUE) in diagnostic models of gross primary productivity. This modelling approach would avoid the complications that are involved in using meteorological data as constraints for a fixed maximum LUE. However, no unifying model predicting LUE across climate zones and time based on MODIS PRI has been published to date. In this study, we evaluate the effectiveness with which MODIS-based PRI can be used to estimate ecosystem light use efficiency at study sites of different plant functional types and vegetation densities. Our objective is to examine if known limitations such as dependence on viewing and illumination geometry can be overcome and a single PRI-based model of LUE (i.e. based on the same reference band) can be applied under a wide range of conditions. Furthermore, we were interested in the effect of using different faPAR (fraction of absorbed photosynthetically active radiation) products on the in-situ LUE used as ground truth and thus on the whole evaluation exercise. We found that estimating LUE at site-level based on PRI reduces uncertainty compared to the approaches relying on a maximum LUE reduced by minimum temperature and vapour pressure deficit. Despite the advantages of using PRI to estimate LUE at site-level, we could not establish an universally applicable light use efficiency model based on MODIS PRI. Models that were optimised for a pool of data from several sites did not perform well

    GX15-070 (obatoclax) overcomes glucocorticoid resistance in acute lymphoblastic leukemia through induction of apoptosis and autophagy

    Get PDF
    Glucocorticoids (GCs) are common components of many chemotherapeutic regimens for lymphoid malignancies including acute lymphoblastic leukemia (ALL). The BCL-2 family has an essential role in regulating GC-induced cell death. Here we show that downregulation of antiapoptotic BCL-2 family proteins, especially MCL-1, enhances GC-induced cell death. Thus we target MCL-1 by using GX15-070 (obatoclax) in ALL cells. Treatment with GX15-070 in both dexamethasone (Dex)-sensitive and -resistant ALL cells shows effective growth inhibition and cell death. GX15-070 induces caspase-3 cleavage and increases the Annexin V-positive population, which is indicative of apoptosis. Before the onset of apoptosis, GX15-070 induces LC3 conversion as well as p62 degradation, both of which are autophagic cell death markers. A pro-apoptotic molecule BAK is released from the BAK/MCL-1 complex following GX15-070 treatment. Consistently, downregulation of BAK reduces caspase-3 cleavage and cell death, but does not alter LC3 conversion. In contrast, downregulation of ATG5, an autophagy regulator, decreases LC3 conversion and cell death, but does not alter caspase-3 cleavage, suggesting that apoptosis and autophagy induced by GX15-070 are independently regulated. Downregulation of Beclin-1, which is capable of crosstalk between apoptosis and autophagy, affects GX15-070-induced cell death through apoptosis but not autophagy. Taken together, GX15-070 treatment in ALL could be an alternative regimen to overcome glucocorticoid resistance by inducing BAK-dependent apoptosis and ATG5-dependent autophagy

    Author Correction: The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data

    Full text link
    The following authors were omitted from the original version of this Data Descriptor: Markus Reichstein and Nicolas Vuichard. Both contributed to the code development and N. Vuichard contributed to the processing of the ERA-Interim data downscaling. Furthermore, the contribution of the co-author Frank Tiedemann was re-evaluated relative to the colleague Corinna Rebmann, both working at the same sites, and based on this re-evaluation a substitution in the co-author list is implemented (with Rebmann replacing Tiedemann). Finally, two affiliations were listed incorrectly and are corrected here (entries 190 and 193). The author list and affiliations have been amended to address these omissions in both the HTML and PDF versions

    The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data.

    Full text link
    The FLUXNET2015 dataset provides ecosystem-scale data on CO2, water, and energy exchange between the biosphere and the atmosphere, and other meteorological and biological measurements, from 212 sites around the globe (over 1500 site-years, up to and including year 2014). These sites, independently managed and operated, voluntarily contributed their data to create global datasets. Data were quality controlled and processed using uniform methods, to improve consistency and intercomparability across sites. The dataset is already being used in a number of applications, including ecophysiology studies, remote sensing studies, and development of ecosystem and Earth system models. FLUXNET2015 includes derived-data products, such as gap-filled time series, ecosystem respiration and photosynthetic uptake estimates, estimation of uncertainties, and metadata about the measurements, presented for the first time in this paper. In addition, 206 of these sites are for the first time distributed under a Creative Commons (CC-BY 4.0) license. This paper details this enhanced dataset and the processing methods, now made available as open-source codes, making the dataset more accessible, transparent, and reproducible

    Influenza vaccination for immunocompromised patients: systematic review and meta-analysis from a public health policy perspective.

    Get PDF
    Immunocompromised patients are vulnerable to severe or complicated influenza infection. Vaccination is widely recommended for this group. This systematic review and meta-analysis assesses influenza vaccination for immunocompromised patients in terms of preventing influenza-like illness and laboratory confirmed influenza, serological response and adverse events

    Gas exchange and leaf aging in an evergreen oak: causes and consequences for leaf carbon balance and canopy respiration

    No full text
    Leaves of Mediterranean evergreens experience large variations in gas exchange rates over their life span due to aging and seasonally changing environmental conditions. Accounting for the changing respiratory physiology of leaves over time will help improve estimations of leaf and whole-plant carbon balances. Here we examined seasonal variations in light-saturated net CO2 assimilation (Amax), dark respiration (Rd) and the proportional change in Rd per 10 °C change in temperature (Q10 of Rd) in previous-year (PY) and current-year (CY) leaves of the broadleaved evergreen tree Quercus ilex L. Amax and Rd were lower in PY than in CY leaves. Differences in nitrogen between cohorts only partly explained such differences, and rates of Amax and Rd expressed per unit of leaf nitrogen were still significantly different between cohorts. The decline in Amax in PY leaves did not result in the depletion of total non-structural carbohydrates, whose concentration was in fact higher in PY than CY leaves. Leaf-level carbon balance modeled from gas exchange data was positive at all ages. Q10 of Rd did not differ significantly between leaf cohorts; however, failure to account for distinct Rd between cohorts misestimated canopy leaf respiration by 13% across dates when scaling up leaf measurements to the canopy. In conclusion, the decline in Amax in old leaves that are close to or exceed their mean life span does not limit the availability of carbohydrates, which are probably needed to sustain new growth, as well as Rd and nutrient resorption during senescence. Accounting for leaf age as a source of variation of Rd improves the estimation of foliar respiratory carbon release at the stand scale

    The temporal response to drought in a Mediterranean evergreen tree: comparing a regional precipitation gradient and a throughfall exclusion experiment

    No full text
    Like many midlatitude ecosystems, Mediterranean forests will suffer longer and more intense droughts with the ongoing climate change. The responses to drought in long-lived trees differ depending on the time scale considered, and short-term responses are currently better understood than longer term acclimation. We assessed the temporal changes in trees facing a chronic reduction in water availability by comparing leaf-scale physiological traits, branch-scale hydraulic traits, and stand-scale biomass partitioning in the evergreen Quercus ilex across a regional precipitation gradient (long-term changes) and in a partial throughfall exclusion experiment (TEE, medium term changes). At the leaf scale, gas exchange, mass per unit area and nitrogen concentration showed homeostatic responses to drought as they did not change among the sites of the precipitation gradient or in the experimental treatments of the TEE. A similar homeostatic response was observed for the xylem vulnerability to cavitation at the branch scale. In contrast, the ratio of leaf area over sapwood area (LA/SA) in young branches exhibited a transient response to drought because it decreased in response to the TEE the first 4 years of treatment, but did not change among the sites of the gradient. At the stand scale, leaf area index (LAI) decreased, and the ratios of stem SA to LAI and of fine root area to LAI both increased in trees subjected to throughfall exclusion and from the wettest to the driest site of the gradient. Taken together, these results suggest that acclimation to chronic drought in long-lived Q. ilex is mediated by changes in hydraulic allometry that shift progressively from low (branch) to high (stand) organizational levels, and act to maintain the leaf water potential within the range of xylem hydraulic function and leaf photosynthetic assimilation

    Stacked-Wires FETs for advanced CMOS scaling

    No full text
    International audienceWe present recent progress on vertically stacked-wires MOSFETs with a replacement metal gate process for CMOS scaling beyond FinFET technology. Key technological challenges (such as 3D integration process including inner spacer, mobility, and strain engineering) will be discussed in relation to recent research results
    • …
    corecore