54 research outputs found

    Structure of Extremely Nanosized and Confined In-O Species in Ordered Porous Materials

    Full text link
    Perturbed-angular correlation, x-ray absorption, and small-angle x-ray scattering spectroscopies were suitably combined to elucidate the local structure of highly diluted and dispersed InOx species confined in porous of ZSM5 zeolite. These novel approach allow us to determined the structure of extremely nanosized In-O species exchanged inside the 10-atom-ring channel of the zeolite, and to quantify the amount of In2O3 crystallites deposited onto the external zeolite surface.Comment: 4 pages, 5 postscript figures, REVTEX4, published in Physical Review Letter

    Cationic exchange in nanosized ZnFe2O4 spinel revealed by experimental and simulated near-edge absorption structure

    Full text link
    The non-equilibrium cation site occupancy in nanosized zinc ferrites (6-13 nm) with different degree of inversion (0.2 to 0.4) was investigated using Fe and Zn K-edge x-ray absorption spectroscopy XANES and EXAFS, and magnetic measurements. The very good agreement between experimental and ab-initio calculations on the Zn K-edge XANES region clearly show the large Zn2+(A)--Zn2+[B] transference that takes place in addition to the well-identified Fe3+[B]--Fe3+(A) one, without altering the long-range structural order. XANES spectra features as a function of the spinel inversion were shown to depend on the configuration of the ligand shells surrounding the absorbing atom. This XANES approach provides a direct way to sense cationic inversion in these spinel compounds. We also demonstrated that a mechanical crystallization takes place on nanocrystalline spinel that causes an increase of both grain and magnetic sizes and, simultaneously, generates a significant augment of the inversion.Comment: 5 pages, 5 eps figures, uses revtex4, corrected table

    Spontaneous oxidation of disordered fcc FePt nanoparticles

    Get PDF
    In this work we present new results on spontaneous oxidation of disordered fcc FePt nanoparticles. The "as-made" oleic acid and oleylamine coated FePt nanoparticles of average size 4 nm synthesized by a high-boiling coordinating solvent method were exposed to air over a period of days and characterized structurally and magnetically by means of different techniques such as XANES, XPS, EXAFS, and SQUID magnetometry. The "as-made" FePt nanoparticles stabilize in the disordered fcc structure and have a very low magnetic saturation (M(s)=11 emu/g) and a huge coercive field (H_(c)=1800 Oe) compared to the low temperature bulk values of the disordered fcc FePt. We observed that the coercive field and the magnetic saturation change with the time the sample is exposed to air and these changes are associated with the oxidation or passivation of the nanoparticle surface that gives place to a core-shell structure. Indeed, the study on the electronic properties of the nanoparticles confirms the magnetic results and indicates that when the nanoparticles are exposed to air, changes in the oxidation state of both Fe and Pt occur, the oxidation state of Fe coming close to hematite. The formation of hematite tends to soften the "as-made" FePt nanoparticles as observed by the reduction of the coercive field to almost one third of the original value. Although the hematite softens the FePt nanoparticles, there is an exchange coupling at the interface of the core-shell characterized by the increase of the coercive field from 300 to 900 Oe when the sample is cooled in an applied field of 50 kOe

    Cationic exchange in nanosized ZnFe₂O₄ spinel revealed by experimental and simulated near-edge absorption structure

    Get PDF
    The nonequilibrium cation site occupancy in nanosized zinc ferrites ( ∼ 6 – 13 nm ) with different degree of inversion ( ∼ 0.2 to 0.4) was investigated using Fe and Zn K -edge x-ray absorption near edge spectroscopy (XANES) and extended x-ray absorption fine structure, and magnetic measurements. The very good agreement between experimental and ab initio calculations on the Zn K -edge XANES region clearly shows the large Zn²⁺ ( A ) → Zn²⁺ [ B ] transference that takes place in addition to the well-identified Fe³⁺ [ B ] → Fe³⁺ ( A ) one, without altering the long-range structural order. XANES spectra features as a function of the spinel inversion were shown to depend on the configuration of the ligand shells surrounding the absorbing atom. This XANES approach provides a direct way to sense cationic inversion in these Zn-containing spinel ferrites. We also demonstrated that a mechanical crystallization takes place on nanocrystalline spinel that causes an increase of both grain and magnetic sizes and, simultaneously, generates a significant augment of the inversion.Instituto de Física La Plat

    Treatment time and circadian genotype interact to influence radiotherapy side-effects. A prospective European validation study using the REQUITE cohort

    Get PDF
    Breast cancer; Circadian rhythm; RadiotherapyCáncer de mama; Ritmo circadiano; RadioterapiaCàncer de mama; Ritme circadià; RadioteràpiaBackground Circadian rhythm impacts broad biological processes, including response to cancer treatment. Evidence conflicts on whether treatment time affects risk of radiotherapy side-effects, likely because of differing time analyses and target tissues. We previously showed interactive effects of time and genotypes of circadian genes on late toxicity after breast radiotherapy and aimed to validate those results in a multi-centre cohort. Methods Clinical and genotype data from 1690 REQUITE breast cancer patients were used with erythema (acute; n=340) and breast atrophy (two years post-radiotherapy; n=514) as primary endpoints. Local datetimes per fraction were converted into solar times as predictors. Genetic chronotype markers were included in logistic regressions to identify primary endpoint predictors. Findings Significant predictors for erythema included BMI, radiation dose and PER3 genotype (OR 1.27(95%CI 1.03-1.56); P < 0.03). Effect of treatment time effect on acute toxicity was inconclusive, with no interaction between time and genotype. For late toxicity (breast atrophy), predictors included BMI, radiation dose, surgery type, treatment time and SNPs in CLOCK (OR 0.62 (95%CI 0.4-0.9); P < 0.01), PER3 (OR 0.65 (95%CI 0.44-0.97); P < 0.04) and RASD1 (OR 0.56 (95%CI 0.35-0.89); P < 0.02). There was a statistically significant interaction between time and genotypes of circadian rhythm genes (CLOCK OR 1.13 (95%CI 1.03-1.23), P < 0.01; PER3 OR 1.1 (95%CI 1.01-1.2), P < 0.04; RASD1 OR 1.15 (95%CI 1.04-1.28), P < 0.008), with peak time for toxicity determined by genotype. Interpretation Late atrophy can be mitigated by selecting optimal treatment time according to circadian genotypes (e.g. treat PER3 rs2087947C/C genotypes in mornings; T/T in afternoons). We predict triple-homozygous patients (14%) reduce chance of atrophy from 70% to 33% by treating in mornings as opposed to mid-afternoon. Future clinical trials could stratify patients treated at optimal times compared to those scheduled normally.EU-FP7

    Caracterización de zeolitas ZSM5 con In mediante el empleo de la técnica de correlaciones angulares perturbadas

    Get PDF
    Mediante el empleo de la técnica de las Correlaciones Angulares Perturbadas es posible determinar in-situ la presencia de especies de gran dispersión. De esta manera resulta de interés la aplicación de esta técnica hiperfina al campo de la catálisis. En el presente trabajo se utiliza la sonda CAP¹¹¹In para el estudio de especies de In en el catalizador zeolítico In-ZSM5. Se analizan la naturaleza y concentración de las especies In-0 formadas.By using the Perturbated Angular Correlation technique, it is possible lo determine “in-situ" tbc prescnce of veiy dispersed spccics. In this way, it becomes of special interest the aplication of this hiperfme technique to the catalysis field. In the present work ¹¹¹In CAP probe is used to study the indium species in the zeolite catalyzer In-SZM5. The nature and concentraron of In-0 formed species are analizad.Facultad de Ciencias Exacta

    Caracterización de zeolitas ZSM5 con In mediante el empleo de la técnica de correlaciones angulares perturbadas

    Get PDF
    Mediante el empleo de la técnica de las Correlaciones Angulares Perturbadas es posible determinar in-situ la presencia de especies de gran dispersión. De esta manera resulta de interés la aplicación de esta técnica hiperfina al campo de la catálisis. En el presente trabajo se utiliza la sonda CAP¹¹¹In para el estudio de especies de In en el catalizador zeolítico In-ZSM5. Se analizan la naturaleza y concentración de las especies In-0 formadas.By using the Perturbated Angular Correlation technique, it is possible lo determine “in-situ" tbc prescnce of veiy dispersed spccics. In this way, it becomes of special interest the aplication of this hiperfme technique to the catalysis field. In the present work ¹¹¹In CAP probe is used to study the indium species in the zeolite catalyzer In-SZM5. The nature and concentraron of In-0 formed species are analizad.Facultad de Ciencias Exacta

    Cationic exchange in nanosized ZnFe₂O₄ spinel revealed by experimental and simulated near-edge absorption structure

    Get PDF
    The nonequilibrium cation site occupancy in nanosized zinc ferrites ( ∼ 6 – 13 nm ) with different degree of inversion ( ∼ 0.2 to 0.4) was investigated using Fe and Zn K -edge x-ray absorption near edge spectroscopy (XANES) and extended x-ray absorption fine structure, and magnetic measurements. The very good agreement between experimental and ab initio calculations on the Zn K -edge XANES region clearly shows the large Zn²⁺ ( A ) → Zn²⁺ [ B ] transference that takes place in addition to the well-identified Fe³⁺ [ B ] → Fe³⁺ ( A ) one, without altering the long-range structural order. XANES spectra features as a function of the spinel inversion were shown to depend on the configuration of the ligand shells surrounding the absorbing atom. This XANES approach provides a direct way to sense cationic inversion in these Zn-containing spinel ferrites. We also demonstrated that a mechanical crystallization takes place on nanocrystalline spinel that causes an increase of both grain and magnetic sizes and, simultaneously, generates a significant augment of the inversion.Instituto de Física La Plat

    Stability and Reversible Oxidation of Sub-Nanometric Cu5 Metal Clusters: Integrated Experimental Study and Theoretical Modeling

    Get PDF
    12 pags., 6 figs.Sub-nanometer Metal clusters have special physical and chemical properties, significantly different from those of nanoparticles. However, there is a major concern about their thermal stability and susceptibility to oxidation. In situ X-ray Absorption spectroscopy and Near Ambient Pressure X-ray Photoelectron spectroscopy results reveal that supported Cu5 clusters are resistant to irreversible oxidation at least up to 773 K, even in the presence of 0.15 mbar of oxygen. These experimental findings can be formally described by a theoretical model which combines dispersion-corrected DFT and first principles thermochemistry revealing that most of the adsorbed O2 molecules are transformed into superoxo and peroxo species by an interplay of collective charge transfer within the network of Cu atoms and large amplitude "breathing" motions. A chemical phase diagram for Cu oxidation state of the Cu5-oxygen system is presented, clearly different from the already known bulk and nano-structured chemistry of Cu.This work has been partly supported by the Spanish Ministerio de Ciencia e Innovación (TED2021-131899BI00/MCIN/AEI/10.13039/501100011033/ Unión Europea NextGenerationEU/PRTR), and the Agencia Estatal de Investigación (AEI) and the Fondo Europeo de Desarrollo Regional (FEDER, UE) under Grants Nos, PID2019-107115GBC21, and PID2020-117605GB-I00; the EU Doctoral Network PHYMOL 101073474 (project call reference HORIZON-MSCA2021-DN-01); the Austrian Science Fund (FWF) under Grant P29893-N36; XUNTA DE GALICIA (Spain) (Grupos Ref. Comp. 2021 - ED431C 2021/16); ANPCyT PICT (2017-1220 and 2017- 3944) and UNLP (Project 11/X937), Argentina. This publication is also based upon work of COST Action CA21101 "Confined molecular systems: from a new generation of materials to the stars" (COSY) supported by COST (European Cooperation in Science and Technology).Peer reviewe
    corecore