12 research outputs found

    Imbalance between HDAC and HAT activities drives aberrant STAT1/MyD88 expression in macrophages from type 1 diabetic mice

    Get PDF
    AIMS: To investigate the hypothesis that alteration in histone acetylation/deacetylation triggers aberrant STAT1/MyD88 expression in macrophages from diabetics. Increased STAT1/MyD88 expression is correlated with sterile inflammation in type 1 diabetic (T1D) mice. METHODS: To induce diabetes, we injected low-doses of streptozotocin in C57BL/6 mice. Peritoneal or bone marrow-differentiated macrophages were cultured in 5mM (low) or 25mM (high glucose). ChIP analysis of macrophages from nondiabetic or diabetic mice was performed to determine acetylation of lysine 9 in histone H3 in MyD88 and STAT1 promoter regions. Macrophages from diabetic mice were treated with the histone acetyltransferase inhibitor anacardic acid (AA), followed by determination of mRNA expression by qPCR. RESULTS: Increased STAT1 and MyD88 expression in macrophages from diabetic but not naive mice cultured in low glucose persisted for up to 6days. Macrophages from diabetic mice exhibited increased activity of histone acetyltransferases (HAT) and decreased histone deacetylases (HDAC) activity. We detected increased H3K9Ac binding to Stat1/Myd88 promoters in macrophages from T1D mice and AA in vitro treatment reduced STAT1 and MyD88 mRNA expression. CONCLUSIONS/INTERPRETATION: These results indicate that histone acetylation drives elevated Stat1/Myd88 expression in macrophages from diabetic mice, and this mechanism may be involved in sterile inflammation and diabetes comorbidities

    Cholesterol-Ester Transfer Protein Alters M1 and M2 Macrophage Polarization and Worsens Experimental Elastase-Induced Pulmonary Emphysema

    Get PDF
    Cholesterol-ester transfer protein (CETP) plays a role in atherosclerosis, the inflammatory response to endotoxemia and in experimental and human sepsis. Functional alterations in lipoprotein (LP) metabolism and immune cell populations, including macrophages, occur during sepsis and may be related to comorbidities such as chronic obstructive pulmonary disease (COPD). Macrophages are significantly associated with pulmonary emphysema, and depending on the microenvironment, might exhibit an M1 or M2 phenotype. Macrophages derived from the peritoneum and bone marrow reveal CETP that contributes to its plasma concentration. Here, we evaluated the role of CETP in macrophage polarization and elastase-induced pulmonary emphysema (ELA) in human CETP-expressing transgenic (huCETP) (line 5203, C57BL6/J background) male mice and compared it to their wild type littermates. We showed that bone marrow-derived macrophages from huCETP mice reduce polarization toward the M1 phenotype, but with increased IL-10. Compared to WT, huCETP mice exposed to elastase showed worsened lung function with an increased mean linear intercept (Lm), reflecting airspace enlargement resulting from parenchymal destruction with increased expression of arginase-1 and IL-10, which are M2 markers. The cytokine profile revealed increased IL-6 in plasma and TNF, and IL-10 in bronchoalveolar lavage (BAL), corroborating with the lung immunohistochemistry in the huCETP-ELA group compared to WT-ELA. Elastase treatment in the huCETP group increased VLDL-C and reduced HDL-C. Elastase-induced pulmonary emphysema in huCETP mice promotes lung M2-like phenotype with a deleterious effect in experimental COPD, corroborating the in vitro result in which CETP promoted M2 macrophage polarization. Our results suggest that CETP is associated with inflammatory response and influences the role of macrophages in COPD

    Positioning pharmacists’ roles in primary health care: a discourse analysis of the compensation plan in Alberta, Canada

    Full text link
    Abstract Background A comprehensive Compensation Plan for pharmacy services delivered by community pharmacists was implemented in Alberta, Canada in July 2012. Services covered by the Compensation Plan include care planning services, prescribing services such as adapting prescriptions, and administering a drug or publicly-funded vaccine by injection. Understanding how the Compensation Plan was framed and communicated provides insight into the roles of pharmacists and the potential influence of language on the implementation of services covered by the Compensation Plan by Albertan pharmacists. The objective of this study is to examine the positioning of pharmacists’ roles in documents used to communicate the Compensation Plan to Albertan pharmacists and other audiences. Methods Publicly available documents related to the Compensation Plan, such as news releases or reports, published between January 2012 and December 2015 were obtained from websites such as the Government of Alberta, Alberta Blue Cross, the Alberta College of Pharmacists, the Alberta Pharmacists’ Association, and the Blueprint for Pharmacy. Searches of the Canadian Newsstand database and Google identified additional documents. Discourse analysis was performed using social positioning theory to explore how pharmacists’ roles were constructed in communications about the Compensation Plan. Results In total, 65 publicly available documents were included in the analysis. The Compensation Plan was put forward as a framework for payment for professional services and formal legitimization of pharmacists’ changing professional roles. The discourse associated with the Compensation Plan positioned pharmacists’ roles as: (1) expanding to include services such as medication management for chronic diseases, (2) contributing to primary health care by providing access to services such as prescription renewals and immunizations, and (3) collaborating with other health care team members. Pharmacists’ changing roles were positioned in alignment with the aims of primary health care. Conclusions Social positioning theory provides a useful lens to examine the dynamic and evolving roles of pharmacists. This study provides insight into how communications regarding the Compensation Plan in Alberta, Canada positioned pharmacists’ changing roles in the broader context of changes to primary health care delivery. Our findings may be useful for other jurisdictions considering implementation of remunerated clinical services provided by pharmacists

    Leukotrienes in Type 1 Diabetes

    No full text
    O diabetes tipo 1 (DT1) é uma doença metabólica associada a uma inflamação sistêmica de baixo grau, responsável por importantes co-morbidades associadas. Nosso grupo demonstrou que esta inflamação depende dos níveis plasmáticos aumentados de leucotrieno-B4 (LTB4), o qual estimula o eixo Myd88/STAT1 amplificando a resposta dos receptores TLR/IL1&#946 em macrófagos. Isso caracteriza o programa pró-inflamatório M1 nestas células, que requer energia proveniente da glicólise e produz substancias tóxicas como espécies reativas de oxigênio (ROS) e óxido nítrico (NO). Isto pode ser minimizado pela respiração mitocondrial desacoplada à síntese de ATP no metabolismo lipídico. Assim, na primeira parte do trabalho os macrófagos de camundongos (C57Bl/6) DT1, expressaram níveis elevados de marcadores de oxidação de ácidos graxos, o que não foi observado em macrófagos de camundongos diabéticos tratados com o antagonista de LTB4 (u75302). Além disso, o u75302 também reduziu a expressão aumentada de CD36, receptor envolvido na captação de lipídios, assim como aumento de lipídios intracelulares nestas células. Os elevados níveis de triglicérides e ácidos graxos presentes no plasma dos diabéticos também foram reduzidos pelo antagonista u75302, e isso foi consistente com o aparecimento de marcadores de lipólise (Prdm16 e Fgf21) no tecido adiposo branco destes animais. Da mesma forma, u75302 reduziu o consumo de oxigênio dos macrófagos de animais diabéticos. Isso foi consistente com os resultados obtidos em macrófagos de camundongos diabéticos deficientes da UCP1, os quais apresentaram maior peso corporal, maior massa de gordura e metabolismo mitocondrial mais baixo do que diabéticos WT. A perda de gordura também foi recuperada pelo tratamento com u75302 indicando o envolvimento do LTB4 na perda de adiposidade e dislipidemia em DT1. Na segunda parte do trabalho, confirmamos a participação dos leucotrienos na inflamação sistêmica em DT1 induzida por estreptozotocina. Camundongos (129SvE) diabéticos apresentaram níveis sistêmicos elevados das citocinas e este aumento não ocorreu em 129Sve deficientes da enzima 5-lipoxigenase (5LO-/-), responsável pela síntese de leucotrienos. A freqüência de monócitos pró-inflamatórios (CD11b&#43Ly6ChighLy6G-) circulantes estava aumentada em camundongos diabéticos WT mas não nos 5LO-/-. Macrófagos peritoneais residentes de camundongos diabéticos também apresentaram um fenótipo semelhante ao M1 classicamente ativado (alta expressão de Nos2 e Stat1, e alta produção de NO), que não foi revertido com o estímulo de IL4 in vitro ou in vivo. Por outro lado, os macrófagos dos 5LO-/- diabéticos apresentaram o fenótipo de macrófagos M2 alternativamente ativados (alta expressão de Ym1 e Arg1, e alta atividade de arginase). Os animais WT diabéticos tiveram cicatrização deficiente que se correlacionou com uma baixa freqüência de macrófagos M2 (CD45&#43F4/80&#43CD206&#43) nas lesões cutâneas comparado com os demais grupos. Juntos, estes dados sugerem que no DT1 os leucotrienos contribuem para a inflamação sistêmica e reprogramação dos monócitos e macrófagos para perfil inflamatório e isto está associado com aumento do metabolismo energético nestas células. Estas alterações induzidas nos macrófagos pelos níveis elevados de leucotrienos, particularmente LTB4, se correlacionam com a cicatrização deficiente, com a perda de gordura e hiperlipidemia nos camundongos DT1, sugerindo que o LTB4 possa ser um alvo terapêutico no diabetes.Type 1 diabetes (T1D) is a metabolic disease associated to systemic low grade inflammation, which has an important role in co-morbidities. Our group showed that this inflammation depends on the high systemic levels of leukotriene-B4 (LTB4), which stimulateds MyD88/Stat1 axis, amplifying TLR/IL1&#946 response in macrophages. This characterizes pro inflammatory M1 program, which requires energy from glycolysis, and produces harmful molecules, such as reactive oxygen species (ROS) and nitric oxide (NO). This can be mitigated by mitochondrial respiration uncoupled to ATP synthesis in lipid metabolism. Therefore, in the first part of this study, macrophages from T1D mice (C57Bl/6) expressed high levels of fatty acid oxidation markers, which was not observed in macrophages from T1D mice treated with LTB4 receptor antagonis, u75302. Moreover, u75302 also reduced the high expression od CD36, a receptor involved in lipids uptake, and also reduced intracellular lipids in these cells. The high levels of triglycerides in diabetic plasma were reduced by u75302, and this is consistent with lipolysis markers (Prdm16 and Fgf21) in white adipose tissue of these mice. This was also consistent with results obtained in macrophages from diabetic UCP1 deficient mice, which had higher body weight and lower mitochondrial metabolism then WT diabetics. Fat loss was also recovered by u75302 treatment, indicating an involvement of LTB4 in adiposity loss and dyslipidemia in T1D. In the second part of this study, we confirmed leukotrienes participation in systemic inflammation in T1D streptozotocin-induced. T1D mice (129SvE) increased systemic levels of cytokines, which was not observed in T1D 5-lipoxygenase deficient mice (5LO-/-).The frequency of pro inflammatory monocytes (CD11b&#43Ly6ChighLy6G-) was increased in WT diabetic mice, but not in 5LO-/-. Resident peritoneal macrophages in diabetics had a phenotype similar to M1 classically activated (Nos2 and Stat1 highly expressed, and high production of NO), which was not reversed by IL-4 stimulation in vitro and in vivo. On the other hand, macrophages from diabetic 5LO-/- had a phenotype M2 alternatively activated (Ym1 and Arg1 highly expressed, and high arginase activity). WT diabetic mice had a defective wound healing, which was related to low frequency of M2 (CD45&#43F4/80&#43CD206&#43) macrophages in cutaneous wounds, compared to the other groups. All together, our data suggest that in T1D leukotrienes induce systemic inflammation, and reprogram pro inflammatory phenotype in monocytes and macrophages, and this is related to increased energetic metabolism in these cells. These alteration in macrophages due to leukotrienes effects, mainly LTB4, are correlated to defective healing, with fat loss, and dyslipidemia in T1D mice, suggesting that LTB4 can be a therapeutic target in diabetes

    Eicosapentaenoic Acid Regulates Inflammatory Pathways through Modulation of Transcripts and miRNA in Adipose Tissue of Obese Mice

    No full text
    This study aims to investigate the global profiling of genes and miRNAs expression to explore the regulatory effects of eicosapentaenoic acid (EPA) in visceral adipose tissue (VAT) of obese mice. We used male mice, fed either a high-fat diet (HF) or HF supplemented with EPA (HF-EPA), for 11 weeks. RNA, and small RNA profiling, were performed by RNAseq analysis. We conducted analyses using Ingenuity Pathway Analysis software (IPA®) and validated candidate genes and miRNAs related to lipid mediators and inflammatory pathways using qRT-PCR. We identified 153 genes differentially downregulated, and 62 microRNAs differentially expressed in VAT from HF-EPA compared to HF. Genes with a positive association with inflammation, chemotaxis, insulin resistance, and inflammatory cell death, such as Irf5, Alox5ap, Tlrs, Cd84, Ccr5, Ccl9, and Casp1, were downregulated by EPA. Moreover, EPA significantly reduced LTB4 levels, a lipid mediator with a central role in inflammation and insulin resistance in obesity. The pathways and mRNA/microRNA interactions identified in our study corroborated with data validated for inflammatory genes and miRNAs. Together, our results identified key VAT inflammatory targets and pathways, which are regulated by EPA. These targets merit further investigation to better understand the protective mechanisms of EPA in obesity-associated inflammation

    Kazal-type serine proteinase inhibitors in the midgut of Phlebotomus papatasi

    Get PDF
    Citation: Sigle, Leah Theresa, and Marcelo Ramalho-Ortigao. 2013. “Kazal-Type Serine Proteinase Inhibitors in the Midgut of Phlebotomus Papatasi.” Memórias Do Instituto Oswaldo Cruz 108 (6): 671–78. https://doi.org/10.1590/0074-0276108062013001.Sandflies (Diptera: Psychodidae) are important disease vectors of parasites of the genus Leishmania, as well as bacteria and viruses. Following studies of the midgut transcriptome of Phlebotomus papatasi, the principal vector of Leishmania major, two non-classical Kazal-type serine proteinase inhibitors were identified (PpKzl1 and PpKzl2). Analyses of expression profiles indicated that PpKzl1 and PpKzl2 transcripts are both regulated by blood-feeding in the midgut of P. papatasi and are also expressed in males, larva and pupa. We expressed a recombinant PpKzl2 in a mammalian expression system (CHO-S free style cells) that was applied to in vitro studies to assess serine proteinase inhibition. Recombinant PpKzl2 inhibited α-chymotrypsin to 9.4% residual activity and also inhibited α-thrombin and trypsin to 33.5% and 63.9% residual activity, suggesting that native PpKzl2 is an active serine proteinase inhibitor and likely involved in regulating digestive enzymes in the midgut. Early stages of Leishmania are susceptible to killing by digestive proteinases in the sandfly midgut. Thus, characterising serine proteinase inhibitors may provide new targets and strategies to prevent transmission of Leishmania

    The IRAK1/IRF5 axis initiates IL-12 response by dendritic cells and control of Toxoplasma gondii infection

    No full text
    Summary: Activation of endosomal Toll-like receptor (TLR) 7, TLR9, and TLR11/12 is a key event in the resistance against the parasite Toxoplasma gondii. Endosomal TLR engagement leads to expression of interleukin (IL)-12 via the myddosome, a protein complex containing MyD88 and IL-1 receptor-associated kinase (IRAK) 4 in addition to IRAK1 or IRAK2. In murine macrophages, IRAK2 is essential for IL-12 production via endosomal TLRs but, surprisingly, Irak2−/− mice are only slightly susceptible to T. gondii infection, similar to Irak1−/− mice. Here, we report that upon T. gondii infection IL-12 production by different cell populations requires either IRAK1 or IRAK2, with conventional dendritic cells (DCs) requiring IRAK1 and monocyte-derived DCs (MO-DCs) requiring IRAK2. In both populations, we identify interferon regulatory factor 5 as the main transcription factor driving the myddosome-dependent IL-12 production during T. gondii infection. Consistent with a redundant role of DCs and MO-DCs, mutations that affect IL-12 production in both cell populations show high susceptibility to infection in vivo
    corecore