410 research outputs found

    An Immunoenzyme Linked Assay (ELISA) for the Detection of Antibodies to Truncated Glycoprotein D (tgD) of Bovine Herpesvirus-1

    Get PDF
    Bovine herpesvirus-1 (BHV-1) is responsible for a variety of clinical signs. It is widespread in cattle and causes severe economic losses (Castrucci et al., 2002a, b). To prevent the infection several live and inactivated vaccines are commonly used. However, due to their short-term immunity and incomplete protection, new vaccine strategies have been proposed such as genetic vaccination (Babiuk et al., 1999). With this aim a DNA vaccine, with a plasmid expressing the tgD glycoprotein, known to be responsible for the virus antigenicity and consequent immunogenicity (Castrucci et al., 2004; Gupta et al., 1998), has been investigated. In the present study, the ELISA reaction was performed in order to detect specific antibodies in calves vaccinated with a DNA vaccine using the pcDNA3.1-tgD plasmid

    Expression of ECM proteins fibulin-1 and -2 in acute and chronic liver disease and in cultured rat liver cells

    Get PDF
    Fibulin-2 has previously been considered as a marker to distinguish rat liver myofibroblasts from hepatic stellate cells. The function of other fibulins in acute or chronic liver damage has not yet been investigated. The aim of this study has been to evaluate the expression of fibulin-1 and -2 in models of rat liver injury and in human liver cirrhosis. Their cellular sources have also been investigated. In normal rat liver, fibulin-1 and -2 were both mainly present in the portal field. Fibulin-1-coding transcripts were detected in total RNA of normal rat liver, whereas fibulin-2 mRNA was only detected by sensitive, real-time quantitative polymerase chain reaction. In acute liver injury, the expression of fibulin-1 was significantly increased (17.23-fold after 48 h), whereas that of fibulin-2 was not modified. The expression of both fibulin-1 and -2 was increased in experimental rat liver cirrhosis (19.16- and 26.47-fold, respectively). At the cellular level, fibulin-1 was detectable in hepatocytes, “activated” hepatic stellate cells, and liver myofibroblasts (2.71-, 122.65-, and 469.48-fold over the expression in normal rat liver), whereas fibulin-2 was restricted to liver myofibroblasts and was regulated by transforming growth factor beta-1 (TGF-β1) in 2-day-old hepatocyte cultures and in liver myofibroblasts. Thus, fibulin-1 and -2 respond differentially to single and repeated damaging noxae, and their expression is differently present in liver cells. Expression of the fibulin-2 gene is regulated by TGF-β1 in liver myofibroblasts

    Hepatoblast and mesenchymal cell-specific gene-expression in fetal rat liver and in cultured fetal rat liver cells

    Get PDF
    The aim of this study was to determine whether passaged rat fetal liver cells are functional hepatoblasts. Hepatocyte/hepatoblast- and liver myofibroblast-gene-expressions were studied in adult and fetal rat liver tissues as well as in primary and passaged cultures of isolated rat fetal liver cells at both the mRNA and protein level. Desmin- and Alpha-Smooth Muscle Actin (SMA)-positive cells were located in the walls of liver vessels, whereas Desmin-positive/SMA-negative cells were distributed within the liver parenchyma. Primary cultures contained Prox1-positive hepatoblasts, Desmin/SMA-positive myofibroblasts and only a few Desmin-positive/SMA-negative cells. Albumin and alpha-fetoprotein (AFP) could be detected in the primary cultures and to a lesser extent after the first passage. The number of Desmin-positive/SMA-negative cells decreased with successive passage, such that after the second passage, only Desmin/SMA-positive cells could be detected. SMA-gene-expression increased during the passages, suggesting that myofibroblasts become the major cell population of fetal liver cell cultures over time. This observation needs to be taken into account, should passaged fetal liver cells be used for liver cell transplantation. Moreover it contradicts the concept of epithelial-mesenchymal transformation and suggests rather that selective overgrowth of mesenchymal cells occurs in culture

    Evaluation of safety and efficacy of DNA vaccines against bovine herpesvirus-1 (BoHV-1) in calves.

    Get PDF
    Four DNA vaccines against BoHV-1 were evaluated for their efficacy in calves. Twelve animals were divided into four groups which were injected with four different DNA vaccines: pVAX-tgD (Vaccine A); pVAX-tgD co-immunised with pVAX-48CpG (Vaccine B); pVAX-UbiLacl-tgD-L (Vaccine C); pVAX-UbiLacl-tgD-L co-immunised with pVAX-48CpG (Vaccine D). Three additional calves were given the plasmid vector and served as controls. Ninety days after the first vaccination all calves were challenge infected with BoHV-1. All animals developed a severe form of infections bovine rhinotracheitis. Only the calves given the pVAX-tgD co-immunised with pVAX-48CpG (Vaccine B) developed humoral antibodies against BoHV-1 between 56 and 90 days after the first vaccination, whereas in calves of other groups and in the controls, antibodies appeared only after the infection. In the calves vaccinated with either pVAX-tgD (Vaccine A) or pVAX-tgD combined with pVAX-48CpG (Vaccine B), BoHV-1-specific IFN-gamma secreting cells were detected in PBMCs 90 days after the first vaccination and their number increased after challenge exposure. In the other groups the IFN-gamma secreting cells were detected after virus infection and at low values

    Investigation of defect formation and electronic transport in microcrystalline silicon deposited by hot-wire CVD

    Get PDF
    We have investigated doped and undoped layers of microcrystalline silicon prepared by hot-wire chemical vapour deposition optically, electrically and by means of transmission electron microscopy. Besides needle-like crystals grown perpendicular to the substrate's surface, all of the layers contained a noncrystalline phase with a volume fraction between 4% and 25%. A high oxygen content of several per cent in the porous phase was detected by electron energy loss spectrometry. Deep-level transient spectroscopy of the crystals suggests that the concentration of electrically active defects is less than 1% of the undoped background concentration of typically 10^17 cm -3. Frequency-dependent measurements of the conductance and capacitance perpendicular to the substrate surface showed that a hopping process takes place within the noncrystalline phase parallel to the conduction in the crystals. The parasitic contribution to the electrical circuit arising from the porous phase is believed to be an important loss mechanism in the output of a pin-structured photovoltaic solar cell deposited by hot-wire CVD

    Evaluation of safety and efficacy of DNA vaccines against bovine herpesvirus-1 (BoHV-1) in calves

    Get PDF
    Four DNA vaccines against BoHV-1 were evaluated for their efficacy in calves. Twelve animals were divided into four groups which were injected with four different DNA vaccines: pVAX-tgD (Vaccine A); pVAX-tgD co-immunised with pVAX-48CpG (Vaccine B); pVAX-UbiLacI-tgD-L (Vaccine C); pVAX-UbiLacI-tgD-L co-immunised with pVAX-48CpG (Vaccine D). Three additional calves were given the plasmid vector and served as controls. Ninety days after the first vaccination all calves were challenge infected with BoHV-1. All animals developed a severe form of infections bovine rhinotracheitis. Only the calves given the pVAX-tgD co-immunised with pVAX-48CpG (Vaccine B) developed humoral antibodies against BoHV-1 between 56 and 90 days after the first vaccination, whereas in calves of other groups and in the controls, antibodies appeared only after the infection. In the calves vaccinated with either pVAX-tgD (Vaccine A) or pVAX-tgD combined with pVAX-48CpG (Vaccine B), BoHV-1-specific IFN-g secreting cells were detected in PBMCs 90 days after the first vaccination and their number increased after challenge exposure. In the other groups the IFN-g secreting cells were detected after virus infection and at low values

    Enhanced insulin sensitivity in skeletal muscle and liver by physiological overexpression of SIRT6

    Get PDF
    Objective: Available treatment for obesity and type 2 diabetes mellitus (T2DM) is suboptimal. Thus, identifying novel molecular target(s) exerting protective effects against these metabolic imbalances is of enormous medical significance. Sirt6 loss- and gain-of-function studies have generated confounding data regarding the role of this sirtuin on energy and glucose homeostasis, leaving unclear whether activation or inhibition of SIRT6 may be beneficial for the treatment of obesity and/or T2DM. Methods: To address these issues, we developed and studied a novel mouse model designed to produce eutopic and physiological overexpression of SIRT6 (Sirt6BAC mice). These mutants and their controls underwent several metabolic analyses. These include whole-blood reverse phase high-performance liquid chromatography assay, glucose and pyruvate tolerance tests, hyperinsulinemic-euglycemic clamp assays, and assessment of basal and insulin-induced level of phosphorylated AKT (p-AKT)/AKT in gastrocnemius muscle. Results: Sirt6BAC mice physiologically overexpress functionally competent SIRT6 protein. While Sirt6BAC mice have normal body weight and adiposity, they are protected from developing high-caloric-diet (HCD)-induced hyperglycemia and glucose intolerance. Also, Sirt6BAC mice display increased circulating level of the polyamine spermidine. The ability of insulin to suppress endogenous glucose production was significantly enhanced in Sirt6BAC mice compared to wild-type controls. Insulin-stimulated glucose uptake was increased in Sirt6BAC mice in both gastrocnemius and soleus muscle, but not in brain, interscapular brown adipose, or epididymal adipose tissue. Insulin-induced p-AKT/AKT ratio was increased in gastrocnemius muscle of Sirt6BAC mice compared to wild-type controls. Conclusions: Our data indicate that moderate, physiological overexpression of SIRT6 enhances insulin sensitivity in skeletal muscle and liver, engendering protective actions against diet-induced T2DM. Hence, the present study provides support for the anti-T2DM effect of SIRT6 and suggests SIRT6 as a putative molecular target for anti-T2DM treatment

    An Immune Gene Expression Signature Associated With Development of Human Hepatocellular Carcinoma Identifies Mice That Respond to Chemopreventive Agents

    Get PDF
    Program (HEPCAR, reference no. 667273-2); US Department of Defense(CA150272P3); an Accelerator Award (CRUCK, AECC, AIRC) (HUNTER,reference no. C9380/A26813), NCI Cancer Center Support Grant, National Cancer Institute; Tisch Cancer Institute (P30-CA196521); Samuel Waxman Cancer Research Foundation; Spanish National Health Institute (SAF2016-76390); and the Generalitat de Catalunya/AGAUR (SGR-1358). Agrin Moeini is supported by Spanish National Health Institute. Sara Torrecilla and Judit Peix are funded by Centro de Investigación Biomedica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd-ISCIII). Carla Montironi is a recipient of Josep Font grant. Carmen Andreu-Oller is supported by "la Caixa" INPhINIT Fellowship Grant (LCF/BQ/IN17/11620024). Roser Pinyol is supported by HEPCAR and AECC. Daniela Sia is supported by the Gilead Sciences Research Scholar Program in Liver Disease. Scott L. Friedman is supported by the National Institutes of Health Research project grant (R01,DK5662) and US Department of Defense (CA150272P3). Mathias Heikenwälder was supported by an ERC Consolidator grant (HepatoMetaboPath), the SFBTR 209, 1335 and SFBTR179.Background & Aims: Cirrhosis and chronic inflammation precede development of hepatocellular carcinoma (HCC) in approximately 80% of cases. We investigated immune-related gene expression patterns in liver tissues surrounding early-stage HCCs and chemopreventive agents that might alter these patterns to prevent liver tumorigenesis. Methods: We analyzed gene expression profiles of nontumor liver tissues from 392 patients with early-stage HCC (training set, N = 167 and validation set, N = 225) and liver tissue from patients with cirrhosis without HCC (N = 216, controls) to identify changes in expression of genes that regulate the immune response that could contribute to hepatocarcinogenesis. We defined 172 genes as markers for this deregulated immune response, which we called the immune-mediated cancer field (ICF). We analyzed the expression data of liver tissues from 216 patients with cirrhosis without HCC and investigated the association between this gene expression signature and development of HCC and outcomes of patients (median follow-up, 10 years). Human liver tissues were also analyzed by histology. C57BL/6J mice were given a single injection of diethylnitrosamine (DEN) followed by weekly doses of carbon tetrachloride to induce liver fibrosis and tumorigenesis. Mice were then orally given the multiple tyrosine inhibitor nintedanib or vehicle (controls); liver tissues were collected and histology, transcriptome, and protein analyses were performed. We also analyzed transcriptomes of liver tissues collected from mice on a choline-deficient high-fat diet, which developed chronic liver inflammation and tumors, orally given aspirin and clopidogrel or the anti-inflammatory agent sulindac vs mice on a chow (control) diet. Results: We found the ICF gene expression pattern in 50% of liver tissues from patients with cirrhosis without HCC and in 60% of nontumor liver tissues from patients with early-stage HCC. The liver tissues with the ICF gene expression pattern had 3 different features: increased numbers of effector T cells; increased expression of genes that suppress the immune response and activation of transforming growth factor β signaling; or expression of genes that promote inflammation and activation of interferon gamma signaling. Patients with cirrhosis and liver tissues with the immunosuppressive profile (10% of cases) had a higher risk of HCC (hazard ratio, 2.41; 95% confidence interval, 1.21-4.80). Mice with chemically induced fibrosis or diet-induced steatohepatitis given nintedanib or aspirin and clopidogrel down-regulated the ICF gene expression pattern in liver and developed fewer and smaller tumors than mice given vehicle. Conclusions: We identified an immune-related gene expression pattern in liver tissues of patients with early-stage HCC, called the ICF, that is associated with risk of HCC development in patients with cirrhosis. Administration of nintedanib or aspirin and clopidogrel to mice with chronic liver inflammation caused loss of this gene expression pattern and development of fewer and smaller liver tumors. Agents that alter immune regulatory gene expression patterns associated with carcinogenesis might be tested as chemopreventive agents in patients with cirrhosis

    Mesenchymal/Stromal Gene Expression Signature Relates to Basal-Like Breast Cancers, Identifies Bone Metastasis and Predicts Resistance to Therapies

    Get PDF
    BACKGROUND: Mounting clinical and experimental evidence suggests that the shift of carcinomas towards a mesenchymal phenotype is a common paradigm for both resistance to therapy and tumor recurrence. However, the mesenchymalization of carcinomas has not yet entered clinical practice as a crucial diagnostic paradigm. METHODOLOGY/PRINCIPAL FINDINGS: By integrating in silico and in vitro studies with our epithelial and mesenchymal tumor models, we compare herein crucial molecular pathways of previously described carcinoma-derived mesenchymal tumor cells (A17) with that of both carcinomas and other mesenchymal phenotypes, such as mesenchymal stem cells (MSCs), breast stroma, and various types of sarcomas. We identified three mesenchymal/stromal-signatures which A17 cells shares with MSCs and breast stroma. By using a recently developed computational approach with publicly available microarray data, we show that these signatures: 1) significantly relates to basal-like breast cancer subtypes; 2) significantly relates to bone metastasis; 3) are up-regulated after hormonal treatment; 4) predict resistance to neoadjuvant therapies. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate that mesenchymalization is an intrinsic property of the most aggressive tumors and it relates to therapy resistance as well as bone metastasis
    corecore