10 research outputs found

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Development of New Hybrid Casein-Loaded PHEMA-PEGDA Hydrogels with Enhanced Mineralisation Potential

    No full text
    Casein is a micellar protein rich in glutamic and aspartic acids as well as in phosphoserine. Considering its native affinity for calcium and the connection of sub-micelles through calcium phosphate nanoclusters, this protein holds promise for stimulating biomimetic mineralisation phenomena and direct binding with the mineral phase of hard tissues. In this work we prepared new hybrids based on casein embedded in a poly(2-hydroxyethyl methacrylate)-polyethyleneglycol diacrylate (PHEMA-PEGDA) hydrogel. The resulting materials were investigated structurally by Fourier transform infrared (FT-IR). Casein modified the water affinity and the rheological properties of the hybrids. The microstructure was explored by scanning electron microscopy (SEM) and the distribution of the protein was established by combined SEM micrographs and elemental mapping considering the casein-specific elements (P, N and S) not contained by the synthetic hydrogel matrix. The effect of casein on the mineralisation potential and stability of the mineral phase was investigated by FT-IR and SEM when alternating incubation in Ca/P solutions is performed. Increasing casein content in the hybrids leads to improved mineralisation, with localised formation of nanoapatite phase on the protein areas in the richest sample in protein. This behaviour was proved microstructurally by SEM and through overlapping elemental distribution of Ca and P from the newly formed mineral and P, S and N from the protein. This study indicates that nanoapatite-casein-PHEMA-PEGDA nanocomposites may be developed for potential use in bone repair and regeneration

    Nanocomposite Hydrogels Based on Poly(<i>N</i>-vinyl pyrrolidone)

    No full text
    Poly(N-vinyl pyrrolidone) (PNVP) is one of the most studied and recognized polymer for use in the pharmaceutical industry and medicine purposes due to its unique combination of highly essential properties such as nontoxicity, biocompatibility with human tissue, chemical stability, and good solubility in water and other solvents. Most of the PNVP-based hydrogels are characterized by low mechanical properties when handled in a swollen state. For this purpose, several methods have been reported to increase the mechanical properties of these gels by introducing an inorganic clay as a reinforcing agent. The present work deals with the preparation and detailed structural characterization of nanocomposite hydrogels based on amidic N-vinyl pyrrolidone (NVP) monomers with or without N,N-methylenbis(acrylamide) (MBA) as chemical crosslinker and different concentrations of Laponite XLG as reinforcing agent. The hydrogels were synthesized by the radical polymerization of the monomers using 2,2-azobisisobutyronitrile (AIBN) as the initiator. In this study, we evaluated the structure of PNVP-based nanocomposites by using FT-IR, their morphology through SEM–EDX, and the influence of different amounts of Laponite XLG on the final properties, by performing rheological measurements and swelling studies. The Laponite XLG, used as reinforcing agent, significantly contributed to the improvement in the mechanical properties of the nanocomposite hydrogels

    “Green” PBX Formulations Based on High Explosives (RDX and HMX) and Water-Soluble pH-Sensitive Polymeric Binders

    No full text
    The increasingly harsher and more complex international and European environmental legislation drives the current development of “greener” energetics materials and munitions. The aerospace and defense industries rely on extensive research in the formulation and scale-up production of polymer-bonded explosives (PBX). In this context, this paper aims to present a versatile method for obtaining “green” PBX formulations based on two high explosives (hexogen (RDX) and octogen (HMX)) and acrylic acid—ethyl acrylate copolymeric binders. This study developed an innovative “eco-friendly” technology for coating the RDX and HMX crystals, allowing straightforward and safer manufacture of PBX, avoiding the use of traditional organic solvents. At the same time, these polymeric binders are soluble in water at a slightly alkaline pH and insoluble at acidic or neutral pH, thus ensuring a safer manipulation of the energetic materials during their entire life cycle and a facile recovery of the explosive in its original shape and morphology in demilitarization. The PBX formulations were characterized via specific analytical tools to evaluate the influence of their composition on the safety and performance characteristics: scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FT-IR), alkaline pH solubility tests, differential thermal analysis (DTA), impact sensitivity test (BAM Fall Hammer Test), friction sensitivity test (BAM Friction Test), electrostatic sensitivity test (ESD), vacuum stability test, small scale shock reactivity test (SSRT), detonation velocity test. The “green” PBX formulations obtained through a simple and innovative coating method, based on the polymeric binders’ adjustable water solubility, demonstrated remarkable energetic performances and a facile recovery of the explosive crystals by the dissolution of the polymeric binder at pH 11 and 30 °C

    Design and Application of Photocrosslinkable Hydrogel Films for Fast and Efficient Decontamination of Chemical Warfare Agents

    No full text
    This paper describes the design of photocrosslinkable interpenetrated network hydrogel peelable films, presenting the remarkable ability to successfully neutralize and safely remove from contaminated surfaces two of the most notorious highly toxic real chemical warfare agents (CWAs)the blistering agent mustard gas (HD) and the nerve agent soman (GD). The goal of this study was to develop an innovative method for CWA decontamination that allows fast and efficient remediation of CWA-affected sites by entrapping the toxic compounds inside the polymeric matrix of the hydrogel, along with their efficient degradation using a dual routehydrolytic and photocatalytic. With this aim, eight different formulations were developed for CWA decontamination involving aqueous blends containing the water-soluble components: a polymer (polyvinyl alcohol), monomers (acrylamide, acrylic acid, and/or 2-hydroxypropyl methacrylate in different molar ratios), a crosslinker (N,Nâ€Č-methylenebisacrylamide), and a photoinitiator [2-hydroxy-4’-(2-hydroxyethoxy)-2-methylpropiphenone]. Also, in four of these decontamination solutions, titanium dioxide nanoparticles were incorporated to investigate if their photoactive potential can enhance the CWA decontamination process. The outstanding ability of these materials to neutralize CWA, as well as their suitability for decontamination purposes, was demonstrated through a variety of analytical tools (scanning electron microscopy, micro-CT, Fourier transform infrared spectroscopy, thermogravimetric analysis, dynamic mechanical analysis, and shear, tensile, and compression tests), swelling investigations, and gas chromatography–mass spectrometry surveyed decontamination tests on two real warfare agents (HD and GD) and one chemical warfare simulant (dimethyl methylphosphonate, a simulant for G series nerve agents). After peeling the hydrogels from the contaminated surfaces, the decontamination efficiency was calculated, and the values obtained varied from 99.35 to 99.98%

    Effect of Aromatic Chain Extenders on Polyurea and Polyurethane Coatings Designed for Defense Applications

    No full text
    The present work describes the synthesis of new versatile polyurea (PU) and polyurethane (PUR) matrices, including different chain extenders, which facilitate the design of distinct, tunable properties, and high-performance derivatives. These polymers can be used for various defense and security applications, such as coatings for ballistic protection, CBRN protection, binders for energetic formulations, etc. Combining aliphatic and aromatic molecules in PU or PUR structures enables the synthesis of polymers with improved and controllable thermo-mechanical properties. Thus, for polyurea synthesis, we utilized two types of polymeric aliphatic diamines and three types of aromatic chain extenders (1,1&rsquo;-biphenyl-4,4&rsquo;-diamine, benzene-1,2-diamine, and 1,2-diphenylhydrazine). An analogous method was used to synthesize polyurethane films by employing one polymeric aliphatic polyol and three types of aromatic chain extenders (benzene-1,3-diol, benzene-1,4-diol, and benzene-1,2,3-triol). Subsequently, various analytic techniques (Fourier transform infrared spectroscopy&ndash;attenuated total reflectance (FTIR-ATR), single cantilever dynamic mechanical analysis (DMA), thermogravimetric analysis (TGA), frequency-dependent shear modulus survey, tensile tests, water contact angle measurements, and scanning electron microscopy (SEM) with energy-dispersive X-ray analysis (EDX)) have been utilized to characterize the synthesized materials and to evaluate the influence of each chain extender on their final properties

    A Facile Synthesis Route of Hybrid Polyurea-Polyurethane-MWCNTs Nanocomposite Coatings for Ballistic Protection and Experimental Testing in Dynamic Regime

    No full text
    This study describes a simple, practical, inexpensive, improved, and efficient novel method for obtaining polyurea-polyurethane-multiwall carbon nanotubes (MWCNTs) nanocomposites with enhanced mechanical properties, and their experimental testing in a dynamic regime. SEM and micro-CT investigations validated the homogeneity of the nanocomposite films and uniform dispersion of the nanofiller inside the polymeric matrix. The experimental measurements (TGA, DSC, DMA, and tensile tests) revealed improved thermal and mechanical properties of these new materials. To demonstrate that these nanocomposites are suitable for ballistic protection, impact tests were performed on aluminum plates coated with the polyurea-polyurethane MWCNTs nanocomposites, using a Hopkinson bar set-up. The experimental testing in the dynamic regime of the polyurea- polyurethane-coated aluminum plates confirmed that the nanocomposite layers allow the metal plate to maintain its integrity at a maximum force value that is almost 200% higher than for the uncoated metallic specimens

    Reactive Organic Suspensions Comprising ZnO, TiO2, and Zeolite Nanosized Adsorbents: Evaluation of Decontamination Efficiency on Soman and Sulfur Mustard

    No full text
    This paper comprises an extensive study on the evaluation of decontamination efficiency of three types of reactive organic suspensions (based on nanosized adsorbents) on two real chemical warfare agents: soman (GD) and sulfur mustard (HD). Three types of nanoparticles (ZnO, TiO2, and zeolite) were employed in the decontamination formulations, for enhancing the degradation of the toxic agents. The efficacy of each decontamination solution was investigated by means of GC-MS analysis, considering the initial concentration of toxic agent and the residual toxic concentration, measured at different time intervals, until the completion of the decontamination process. The conversion of the two chemical warfare agents (HD and GD) into their decontamination products was also monitored for 24 h

    MAPLE Assembled Acetylcholinesterase–Polyethylenimine Hybrid and Multilayered Interfaces for Toxic Gases Detection

    No full text
    Developing a controlled method for obtaining hybrid enzymatic-based interfaces for sensing application require the use of a multiuse, reusable sensor. By controlling the interface characteristics in terms of the surface chemistry, thickness, and roughness, a tailored response toward various toxic compounds can be obtained, regarding both materials used as active surfaces and fabrication methods. Herein, we report a preliminary study on using a laser-based method (i.e., matrix-assisted pulsed laser evaporation, or MAPLE) for obtaining active polymeric–enzymatic interfaces as hybrid or layered coatings for detecting toxic vapors. The MAPLE fabrication consisted of the simultaneous alternating evaporation of layers of polyethylenimine (PEI) and acetylcholinesterase (AchE) in order to obtain active surfaces as both hybrid PEI-AchE and a PEI/AchE layered coating, respectively. The deposition processes of the polymer and enzyme were carried out using a double-target system and a Nd:YAG pulsed laser, operating at 0.45 J/cm2 fluences with a wavelength of 266 nm and a repetition rate of 10 Hz. Fourier transform infrared spectroscopy revealed no significant changes in the functional groups of both hybrid and layered coatings compared with the initial material. The thickness and roughness, as well as the morphologies of the coatings revealed by atomic force microscopy and scanning electron microscopy showed coatings thicker than two ÎŒm that had smooth surfaces and average roughness values below six nm. The sensors were tested with simulants for nerve gases and pesticides containing phosphonate ester groups, namely dimethyl methylphosphonate (DMMP) and diisopropyl methylphosphonate (DIMP), and a different sensitivity was shown to the selected chemical agents for each of the sensors. The best sensitivities for DMMP and DIMP obtained by using a PEI-AchE coated sensor are 65 kHz and 200 kHz, respectively, whereas the best sensitivity when using multilayered interfaces is 30 kHz and 10 KHz for DIMP and DMMP, respectively

    Antimicrobial Activity and Degradation Ability Study on Nanoparticle-Enriched Formulations Specially Designed for the Neutralization of Real and Simulated Biological and Chemical Warfare Agents

    No full text
    The present work reveals a comprehensive decontamination study on real and simulated biological and chemical warfare agents (BCWA). The emphasis was on evaluating the antimicrobial activity against real biological warfare agents, such as Bacillus anthracis, and also the capacity of neutralizing real chemical warfare agents, such as mustard gas or soman, by employing three different types of organic solutions enriched with ZnO, TiO2, and zeolite nanoparticles, specially designed for decontamination applications. The capacity of decontaminating BCWA was evaluated through specific investigation tools, including surface monitoring with the swabs method, minimum inhibitory (MIC) and minimum bactericidal concentration (MBC) evaluations, time-kill tests for microorganisms, and GC-MS for monitoring chemical agents on different types of surfaces (glass, painted metal, rubber, and cotton butyl rubber). These tests revealed high decontamination factors for BCWA even after only 10 min, accomplishing the requirements imposed by NATO standards. At the completion of the decontamination process, the formulations reached 100% efficacy for Bacillus anthracis after 10&ndash;15 min, for soman after 20&ndash;30 min, and for mustard gas in an interval comprised between 5 and 24 h depending on the type of surface analyzed
    corecore