73 research outputs found
Allele-Specific Down-Regulation of RPTOR Expression Induced by Retinoids Contributes to Climate Adaptations
The mechanistic target of rapamycin (MTOR) pathway regulates cell growth, energy homeostasis, apoptosis, and immune response. The regulatory associated protein of MTOR encoded by the RPTOR gene is a key component of this pathway. A previous survey of candidate genes found that RPTOR contains multiple SNPs with strong correlations between allele frequencies and climate variables, consistent with the action of selective pressures that vary across environments. Using data from a recent genome scan for selection signals, we honed in on a SNP (rs11868112) 26 kb upstream to the transcription start site of RPTOR that exhibits the strongest association with temperature variables. Transcription factor motif scanning and mining of recently mapped transcription factor binding sites identified a binding site for POU class 2 homeobox 1 (POU2F1) spanning the SNP and an adjacent retinoid acid receptor (RAR) binding site. Using expression quantification, chromatin immunoprecipitation (ChIP), and reporter gene assays, we demonstrate that POU2F1 and RARA do bind upstream of the RPTOR gene to regulate its expression in response to retinoids; this regulation is affected by the allele status at rs11868112 with the derived allele resulting in lower expression levels. We propose a model in which the derived allele influences thermogenesis or immune response by altering MTOR pathway activity and thereby increasing fitness in colder climates. Our results show that signatures of genetic adaptations can identify variants with functional effects, consistent with the idea that selection signals may be used for SNP annotation
Recommended from our members
Allele-Specific Down-Regulation of <i>RPTOR</i> Expression Induced by Retinoids Contributes to Climate Adaptations
The mechanistic target of rapamycin (MTOR) pathway regulates cell growth, energy homeostasis, apoptosis, and immune response. The regulatory associated protein of MTOR encoded by the RPTOR gene is a key component of this pathway. A previous survey of candidate genes found that RPTOR contains multiple SNPs with strong correlations between allele frequencies and climate variables, consistent with the action of selective pressures that vary across environments. Using data from a recent genome scan for selection signals, we honed in on a SNP (rs11868112) 26 kb upstream to the transcription start site of RPTOR that exhibits the strongest association with temperature variables. Transcription factor motif scanning and mining of recently mapped transcription factor binding sites identified a binding site for POU class 2 homeobox 1 (POU2F1) spanning the SNP and an adjacent retinoid acid receptor (RAR) binding site. Using expression quantification, chromatin immunoprecipitation (ChIP), and reporter gene assays, we demonstrate that POU2F1 and RARA do bind upstream of the RPTOR gene to regulate its expression in response to retinoids; this regulation is affected by the allele status at rs11868112 with the derived allele resulting in lower expression levels. We propose a model in which the derived allele influences thermogenesis or immune response by altering MTOR pathway activity and thereby increasing fitness in colder climates. Our results show that signatures of genetic adaptations can identify variants with functional effects, consistent with the idea that selection signals may be used for SNP annotation.</p
Characteristics of methicillin-resistant Staphylococcus aureus from broiler farms in Germany are rather lineage- than source-specific
Methicillin-resistant Staphylococcus aureus (MRSA) are a major concern for public health, and broiler farms are a potential source of MRSA isolates. In this study, a total of 56 MRSA isolates from 15 broiler farms from 4 different counties in Germany were characterised phenotypically and genotypically. Spa types, dru types, SCCmec types, and virulence genes as well as resistance genes were determined by using a DNA microarray or specific PCR assays. In addition, PFGE profiles of isolates were used for analysis of their epidemiological relatedness. While half of the isolates belonged to spa type t011, the other half was of spa types t1430 and t034. On 3 farms, more than 1 spa type was found. The most common dru type was dt10a (n = 19), followed by dt11a (n = 17). Susceptibility testing of all isolates by broth microdilution revealed 21 different resistance phenotypes and a wide range of resistance genes was present among the isolates. Up to 10 different resistance phenotypes were found on individual farms. Resistance to tetracyclines (n = 53), MLSB antibiotics (n = 49), trimethoprim (n = 38), and elevated MICs of tiamulin (n = 29) were most commonly observed. Microarray analysis detected genes for leucocidin (lukF/S), haemolysin gamma (hlgA), and other haemolysines in all isolates. In all t1430 isolates, the egc cluster comprising of genes encoding enterotoxin G, I, M, N, O, U, and/or Y was found. The splitstree analysis based on microarray and PCR gene profiles revealed that all CC9/SCCmec IV/t1430/dt10a isolates clustered apart from the other isolates. These findings confirm that genotypic patterns were specific for clonal lineages rather than for the origin of isolates from individual farms
Comparative profiling identifies C13orf3 as a component of the Ska complex required for mammalian cell division
Proliferation of mammalian cells requires the coordinated function of many proteins to accurately divide a cell into two daughter cells. Several RNAi screens have identified previously uncharacterised genes that are implicated in mammalian cell division. The molecular function for these genes needs to be investigated to place them into pathways. Phenotypic profiling is a useful method to assign putative functions to uncharacterised genes. Here, we show that the analysis of protein localisation is useful to refine a phenotypic profile. We show the utility of this approach by defining a function of the previously uncharacterised gene C13orf3 during cell division. C13orf3 localises to centrosomes, the mitotic spindle, kinetochores, spindle midzone, and the cleavage furrow during cell division and is specifically phosphorylated during mitosis. Furthermore, C13orf3 is required for centrosome integrity and anaphase onset. Depletion by RNAi leads to mitotic arrest in metaphase with an activation of the spindle assembly checkpoint and loss of sister chromatid cohesion. Proteomic analyses identify C13orf3 (Ska3) as a new component of the Ska complex and show a direct interaction with a regulatory subunit of the protein phosphatase PP2A. All together, these data identify C13orf3 as an important factor for metaphase to anaphase progression and highlight the potential of combined RNAi screening and protein localisation analyses
A multi-center study of their physicochemical characteristics, cell culture and in vivo experiments
PVP-capped silver nanoparticles with a diameter of the metallic core of 70 nm,
a hydrodynamic diameter of 120 nm and a zeta potential of −20 mV were prepared
and investigated with regard to their biological activity. This review
summarizes the physicochemical properties (dissolution, protein adsorption,
dispersability) of these nanoparticles and the cellular consequences of the
exposure of a broad range of biological test systems to this defined type of
silver nanoparticles. Silver nanoparticles dissolve in water in the presence
of oxygen. In addition, in biological media (i.e., in the presence of
proteins) the surface of silver nanoparticles is rapidly coated by a protein
corona that influences their physicochemical and biological properties
including cellular uptake. Silver nanoparticles are taken up by cell-type
specific endocytosis pathways as demonstrated for hMSC, primary T-cells,
primary monocytes, and astrocytes. A visualization of particles inside cells
is possible by X-ray microscopy, fluorescence microscopy, and combined FIB/SEM
analysis. By staining organelles, their localization inside the cell can be
additionally determined. While primary brain astrocytes are shown to be fairly
tolerant toward silver nanoparticles, silver nanoparticles induce the
formation of DNA double-strand-breaks (DSB) and lead to chromosomal
aberrations and sister-chromatid exchanges in Chinese hamster fibroblast cell
lines (CHO9, K1, V79B). An exposure of rats to silver nanoparticles in vivo
induced a moderate pulmonary toxicity, however, only at rather high
concentrations. The same was found in precision-cut lung slices of rats in
which silver nanoparticles remained mainly at the tissue surface. In a human
3D triple-cell culture model consisting of three cell types (alveolar
epithelial cells, macrophages, and dendritic cells), adverse effects were also
only found at high silver concentrations. The silver ions that are released
from silver nanoparticles may be harmful to skin with disrupted barrier (e.g.,
wounds) and induce oxidative stress in skin cells (HaCaT). In conclusion, the
data obtained on the effects of this well-defined type of silver nanoparticles
on various biological systems clearly demonstrate that cell-type specific
properties as well as experimental conditions determine the biocompatibility
of and the cellular responses to an exposure with silver nanoparticles
Taxane-Platin-Resistant Lung Cancers Co-develop Hypersensitivity to JumonjiC Demethylase Inhibitors
Although non-small cell lung cancer (NSCLC) patients benefit from standard taxane-platin chemotherapy, many relapse, developing drug resistance. We established preclinical taxane-platin-chemoresistance models and identified a 35-gene resistance signature, which was associated with poor recurrence-free survival in neoadjuvant-treated NSCLC patients and included upregulation of the JumonjiC lysine demethylase KDM3B. In fact, multi-drug-resistant cells progressively increased the expression of many JumonjiC demethylases, had altered histone methylation, and, importantly, showed hypersensitivity to JumonjiC inhibitors in vitro and in vivo. Increasing taxane-platin resistance in progressive cell line series was accompanied by progressive sensitization to JIB-04 and GSK-J4. These JumonjiC inhibitors partly reversed deregulated transcriptional programs, prevented the emergence of drug-tolerant colonies from chemo-naive cells, and synergized with standard chemotherapy in vitro and in vivo. Our findings reveal JumonjiC inhibitors as promising therapies for targeting taxane-platin-chemoresistant NSCLCs.Fil: Dalvi, Maithili P.. University of Texas. Southwestern Medical Center; Estados UnidosFil: Wang, Lei. University of Texas. Southwestern Medical Center; Estados UnidosFil: Zhong, Rui. University of Texas. Southwestern Medical Center; Estados UnidosFil: Kollipara, Rahul K.. University of Texas. Southwestern Medical Center; Estados UnidosFil: Park, Hyunsil. University of Texas. Southwestern Medical Center; Estados UnidosFil: Bayo Fina, Juan Miguel. University of Texas. Southwestern Medical Center; Estados Unidos. Universidad Austral. Facultad de Ciencias Biomédicas. Instituto de Investigaciones en Medicina Traslacional. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones en Medicina Traslacional; ArgentinaFil: Yenerall, Paul. University of Texas. Southwestern Medical Center; Estados UnidosFil: Zhou, Yunyun. University of Texas. Southwestern Medical Center; Estados UnidosFil: Timmons, Brenda C.. University of Texas. Southwestern Medical Center; Estados UnidosFil: Rodriguez Canales, Jaime. University of Texas; Estados UnidosFil: Behrens, Carmen. Md Anderson Cancer Center; Estados UnidosFil: Mino, Barbara. University of Texas; Estados UnidosFil: Villalobos, Pamela. University of Texas; Estados UnidosFil: Parra, Edwin R.. University of Texas; Estados UnidosFil: Suraokar, Milind. University of Texas; Estados UnidosFil: Pataer, Apar. University of Texas; Estados UnidosFil: Swisher, Stephen G.. University of Texas; Estados UnidosFil: Kalhor, Neda. University of Texas; Estados UnidosFil: Bhanu, Natarajan V.. University of Pennsylvania; Estados UnidosFil: Garcia, Benjamin A.. University of Pennsylvania; Estados UnidosFil: Heymach, John V.. University of Texas; Estados UnidosFil: Coombes, Kevin. University of Texas; Estados UnidosFil: Xie, Yang. University of Texas. Southwestern Medical Center; Estados UnidosFil: Girard, Luc. University of Texas. Southwestern Medical Center; Estados UnidosFil: Gazdar, Adi F.. University of Texas. Southwestern Medical Center; Estados UnidosFil: Kittler, Ralf. University of Texas. Southwestern Medical Center; Estados UnidosFil: Wistuba, Ignacio I.. University of Texas; Estados UnidosFil: Minna, John D.. University of Texas. Southwestern Medical Center; Estados UnidosFil: Martinez, Elisabeth D.. University of Texas. Southwestern Medical Center; Estados Unido
HOT1 is a mammalian direct telomere repeat-binding protein contributing to telomerase recruitment.
Telomeres are repetitive DNA structures that, together with the shelterin and the CST complex, protect the ends of chromosomes. Telomere shortening is mitigated in stem and cancer cells through the de novo addition of telomeric repeats by telomerase. Telomere elongation requires the delivery of the telomerase complex to telomeres through a not yet fully understood mechanism. Factors promoting telomerase-telomere interaction are expected to directly bind telomeres and physically interact with the telomerase complex. In search for such a factor we carried out a SILAC-based DNA-protein interaction screen and identified HMBOX1, hereafter referred to as homeobox telomere-binding protein 1 (HOT1). HOT1 directly and specifically binds double-stranded telomere repeats, with the in vivo association correlating with binding to actively processed telomeres. Depletion and overexpression experiments classify HOT1 as a positive regulator of telomere length. Furthermore, immunoprecipitation and cell fractionation analyses show that HOT1 associates with the active telomerase complex and promotes chromatin association of telomerase. Collectively, these findings suggest that HOT1 supports telomerase-dependent telomere elongation
Consequences of Eukaryotic Enhancer Architecture for Gene Expression Dynamics, Development, and Fitness
The regulatory logic of time- and tissue-specific gene expression has mostly been dissected in the context of the smallest DNA fragments that, when isolated, recapitulate native expression in reporter assays. It is not known if the genomic sequences surrounding such fragments, often evolutionarily conserved, have any biological function or not. Using an enhancer of the even-skipped gene of Drosophila as a model, we investigate the functional significance of the genomic sequences surrounding empirically identified enhancers. A 480 bp long “minimal stripe element” is able to drive even-skipped expression in the second of seven stripes but is embedded in a larger region of 800 bp containing evolutionarily conserved binding sites for required transcription factors. To assess the overall fitness contribution made by these binding sites in the native genomic context, we employed a gene-replacement strategy in which whole-locus transgenes, capable of rescuing even-skipped- lethality to adulthood, were substituted for the native gene. The molecular phenotypes were characterized by tagging Even-skipped with a fluorescent protein and monitoring gene expression dynamics in living embryos. We used recombineering to excise the sequences surrounding the minimal enhancer and site-specific transgenesis to create co-isogenic strains differing only in their stripe 2 sequences. Remarkably, the flanking sequences were dispensable for viability, proving the sufficiency of the minimal element for biological function under normal conditions. These sequences are required for robustness to genetic and environmental perturbation instead. The mutant enhancers had measurable sex- and dose-dependent effects on viability. At the molecular level, the mutants showed a destabilization of stripe placement and improper activation of downstream genes. Finally, we demonstrate through live measurements that the peripheral sequences are required for temperature compensation. These results imply that seemingly redundant regulatory sequences beyond the minimal enhancer are necessary for robust gene expression and that “robustness” itself must be an evolved characteristic of the wild-type enhancer
- …