98 research outputs found

    Low cost, low tech SNP genotyping tools for resource-limited areas: Plague in Madagascar as a model

    Get PDF
    Genetic analysis of pathogenic organisms is a useful tool for linking human cases together and/or to potential environmental sources. The resulting data can also provide information on evolutionary patterns within a targeted species and phenotypic traits. However, the instruments often used to generate genotyping data, such as single nucleotide polymorphisms (SNPs), can be expensive and sometimes require advanced technologies to implement. This places many genotyping tools out of reach for laboratories that do not specialize in genetic studies and/or lack the requisite financial and technological resources. To address this issue, we developed a low cost and low tech genotyping system, termed agarose-MAMA, which combines traditional PCR and agarose gel electrophoresis to target phylogenetically informative SNPs

    Temporal phylogeography of Yersinia pestis in Madagascar : Insights into the long-term maintenance of plague

    Get PDF
    Data Availability: All relevant data are within the paper and its Supporting Information files except for the sequence read archives for 31 newly sequenced strains that are available at NCBI under the accession numbers: SRR4175414-SRR4175444. The direct link to this data is: https://www.ncbi.nlm.nih.gov/sra/?term=SRP086709. Funding: Funding for this study was provided by the US Department of Homeland Security’s Science and Technology Directorate award number HSHQDC-10-C-00139 to PK; the Cowden Endowment at Northern Arizona University; and Wellcome fellowships 081705 and 095171 to ST. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD

    Preparation and characterization of antibacterial cobalt-exchanged natural zeolite/poly(vinyl alcohol) hydrogels

    Get PDF
    In the present study, potential application of the local clinoptilolite-rich natural zeolite in formulation of antibacterial hydrogels was investigated. The zeolite powder exchanged with cobalt(II) ions was used in preparation of the zeolite/poly(vinyl alcohol) hydrogel films in different amounts. The films were physically crosslinked by the freezing-thawing method and characterized for their crystallinity, surface and cross sectional morphology, chemical composition, thermal behaviour, mechanical properties, swelling and dissolution behaviours, and antibacterial activities against a Gram-negative bacteria. The films with 0.48 wt% and higher cobalt-exchanged zeolite contents showed antibacterial activity. Addition of the zeolite powder in the formulations did not cause significant changes in the other properties of the films.Turkish Republic Prime Ministry State Planning Organization (DPT-2006 K120690

    Immune Responses to Plague Infection in Wild Rattus rattus, in Madagascar: A Role in Foci Persistence?

    Get PDF
    Plague is endemic within the central highlands of Madagascar, where its main reservoir is the black rat, Rattus rattus. Typically this species is considered susceptible to plague, rapidly dying after infection inducing the spread of infected fleas and, therefore, dissemination of the disease to humans. However, persistence of transmission foci in the same area from year to year, supposes mechanisms of maintenance among which rat immune responses could play a major role. Immunity against plague and subsequent rat survival could play an important role in the stabilization of the foci. In this study, we aimed to investigate serological responses to plague in wild black rats from endemic areas of Madagascar. In addition, we evaluate the use of a recently developed rapid serological diagnostic test to investigate the immune response of potential reservoir hosts in plague foci.We experimentally infected wild rats with Yersinia pestis to investigate short and long-term antibody responses. Anti-F1 IgM and IgG were detected to evaluate this antibody response. High levels of anti-F1 IgM and IgG were found in rats one and three weeks respectively after challenge, with responses greatly differing between villages. Plateau in anti-F1 IgM and IgG responses were reached for as few as 500 and 1500 colony forming units (cfu) inoculated respectively. More than 10% of rats were able to maintain anti-F1 responses for more than one year. This anti-F1 response was conveniently followed using dipsticks.Inoculation of very few bacteria is sufficient to induce high immune response in wild rats, allowing their survival after infection. A great heterogeneity of rat immune responses was found within and between villages which could heavily impact on plague epidemiology. In addition, results indicate that, in the field, anti-F1 dipsticks are efficient to investigate plague outbreaks several months after transmission

    Field assessment of dog as sentinel animal for plague in endemic foci of Madagascar

    Get PDF
    Funding Information: Sincere thanks to Mrs. L Angeltine Ralafiarisoa for technical assistance and the staff of the Plague Unit for their assistance during sample collections. This work was funded by an internal research grant (Ref: PA 14.25) from the Institut Pasteur de Madagascar. This research was also funded in part by the Wellcome Trust [095171/Z/10/Z]. For the purpose of Open Access, the authors have applied a CC BY public copyright license to any Author Accepted Manuscript version arising from this submission.Peer reviewedPublisher PD

    Tissue Compartment Analysis for Biomarker Discovery by Gene Expression Profiling

    Get PDF
    BACKGROUND:Although high throughput technologies for gene profiling are reliable tools, sample/tissue heterogeneity limits their outcomes when applied to identify molecular markers. Indeed, inter-sample differences in cell composition contribute to scatter the data, preventing detection of small but relevant changes in gene expression level. To date, attempts to circumvent this difficulty were based on isolation of the different cell structures constituting biological samples. As an alternate approach, we developed a tissue compartment analysis (TCA) method to assess the cell composition of tissue samples, and applied it to standardize data and to identify biomarkers. METHODOLOGY/PRINCIPAL FINDINGS:TCA is based on the comparison of mRNA expression levels of specific markers of the different constitutive structures in pure isolated structures, on the one hand, and in the whole sample on the other. TCA method was here developed with human kidney samples, as an example of highly heterogeneous organ. It was validated by comparison of the data with those obtained by histo-morphometry. TCA demonstrated the extreme variety of composition of kidney samples, with abundance of specific structures varying from 5 to 95% of the whole sample. TCA permitted to accurately standardize gene expression level amongst >100 kidney biopsies, and to identify otherwise imperceptible molecular disease markers. CONCLUSIONS/SIGNIFICANCE:Because TCA does not require specific preparation of sample, it can be applied to all existing tissue or cDNA libraries or to published data sets, inasmuch specific operational compartments markers are available. In human, where the small size of tissue samples collected in clinical practice accounts for high structural diversity, TCA is well suited for the identification of molecular markers of diseases, and the follow up of identified markers in single patients for diagnosis/prognosis and evaluation of therapy efficiency. In laboratory animals, TCA will interestingly be applied to central nervous system where tissue heterogeneity is a limiting factor

    A self-amplifying RNA vaccine provides protection in a murine model of bubonic plague

    Get PDF
    Mice were immunized with a combination of self-amplifying (sa) RNA constructs for the F1 and V antigens of Yersinia pestis at a dose level of 1 μg or 5 μg or with the respective protein sub-units as a reference vaccine. The immunization of outbred OF1 mice on day 0 and day 28 with the lowest dose used (1 μg) of each of the saRNA constructs in lipid nanoparticles protected 5/7 mice against subsequent sub-cutaneous challenge on day 56 with 180 cfu (2.8 MLD) of a 2021 clinical isolate of Y. pestis termed 10-21/S whilst 5/7 mice were protected against 1800cfu (28MLD) of the same bacteria on day 56. By comparison, only 1/8 or 1/7 negative control mice immunized with 10 μg of irrelevant haemagglutin RNA in lipid nanoparticles (LNP) survived the challenge with 2.8 MLD or 28 MLD Y. pestis 10-21/S, respectively. BALB/c mice were also immunized with the same saRNA constructs and responded with the secretion of specific IgG to F1 and V, neutralizing antibodies for the V antigen and developed a recall response to both F1 and V. These data represent the first report of an RNA vaccine approach using self-amplifying technology and encoding both of the essential virulence antigens, providing efficacy against Y. pestis. This saRNA vaccine for plague has the potential for further development, particularly since its amplifying nature can induce immunity with less boosting. It is also amenable to rapid manufacture with simpler downstream processing than protein sub-units, enabling rapid deployment and surge manufacture during disease outbreaks

    Field evaluation of a rapid immunochromatographic dipstick test for the diagnosis of cholera in a high-risk population

    Get PDF
    BACKGROUND: Early detection of cholera outbreaks is crucial for the implementation of the most appropriate control strategies. METHODS: The performance of an immunochromatographic dipstick test (Institute Pasteur, Paris, France) specific for Vibrio cholerae O1 was evaluated in a prospective study in Beira, Mozambique, during the 2004 cholera season (January-May). Fecal specimens were collected from 391 patients with acute watery nonbloody diarrhea and tested by dipstick and conventional culture. RESULTS: The overall sensitivity and specificity of the rapid test compared to culture were 95% (95% confidence interval [CI]: 91%–99%) and 89% (95% CI: 86%–93%), respectively. After stratification by type of sample (rectal swab/bulk stool) and severity of diarrhea, the sensitivity ranged between 85% and 98% and specificity between 77% and 97%. CONCLUSION: This one-step dipstick test performed well in the diagnosis of V. cholerae O1 in a setting with seasonal outbreaks where rapid tests are most urgently needed

    Plague Circulation and Population Genetics of the Reservoir Rattus rattus: The Influence of Topographic Relief on the Distribution of the Disease within the Madagascan Focus.

    Get PDF
    International audienceBACKGROUND: Landscape may affect the distribution of infectious diseases by influencing the population density and dispersal of hosts and vectors. Plague (Yersinia pestis infection) is a highly virulent, re-emerging disease, the ecology of which has been scarcely studied in Africa. Human seroprevalence data for the major plague focus of Madagascar suggest that plague spreads heterogeneously across the landscape as a function of the relief. Plague is primarily a disease of rodents. We therefore investigated the relationship between disease distribution and the population genetic structure of the black rat, Rattus rattus, the main reservoir of plague in Madagascar. METHODOLOGYPRINCIPAL FINDINGS: We conducted a comparative study of plague seroprevalence and genetic structure (15 microsatellite markers) in rat populations from four geographic areas differing in topology, each covering about 150-200 km(2) within the Madagascan plague focus. The seroprevalence levels in the rat populations mimicked those previously reported for humans. As expected, rat populations clearly displayed a more marked genetic structure with increasing relief. However, the relationship between seroprevalence data and genetic structure differs between areas, suggesting that plague distribution is not related everywhere to the effective dispersal of rats. CONCLUSIONSSIGNIFICANCE: Genetic diversity estimates suggested that plague epizootics had only a weak impact on rat population sizes. In the highlands of Madagascar, plague dissemination cannot be accounted for solely by the effective dispersal of the reservoir. Human social activities may also be involved in spreading the disease in rat and human populations
    corecore