83 research outputs found
Bacterial Communities of the Coronal Sulcus and Distal Urethra of Adolescent Males
Lactobacillus-dominated vaginal microbiotas are associated with reproductive health and STI resistance in women, whereas altered microbiotas are associated with bacterial vaginosis (BV), STI risk and poor reproductive outcomes. Putative vaginal taxa have been observed in male first-catch urine, urethral swab and coronal sulcus (CS) specimens but the significance of these observations is unclear. We used 16 S rRNA sequencing to characterize the microbiota of the CS and urine collected from 18 adolescent men over three consecutive months. CS microbiotas of most participants were more stable than their urine microbiotas and the composition of CS microbiotas were strongly influenced by circumcision. BV-associated taxa, including Atopobium, Megasphaera, Mobiluncus, Prevotella and Gemella, were detected in CS specimens from sexually experienced and inexperienced participants. In contrast, urine primarily contained taxa that were not abundant in CS specimens. Lactobacilllus and Streptococcus were major urine taxa but their abundance was inversely correlated. In contrast, Sneathia, Mycoplasma and Ureaplasma were only found in urine from sexually active participants. Thus, the CS and urine support stable and distinct bacterial communities. Finally, our results suggest that the penis and the urethra can be colonized by a variety of BV-associated taxa and that some of these colonizations result from partnered sexual activity
The Genome Sequence of the Leaf-Cutter Ant Atta cephalotes Reveals Insights into Its Obligate Symbiotic Lifestyle
Leaf-cutter ants are one of the most important herbivorous insects in the Neotropics, harvesting vast quantities of fresh leaf material. The ants use leaves to cultivate a fungus that serves as the colony's primary food source. This obligate ant-fungus mutualism is one of the few occurrences of farming by non-humans and likely facilitated the formation of their massive colonies. Mature leaf-cutter ant colonies contain millions of workers ranging in size from small garden tenders to large soldiers, resulting in one of the most complex polymorphic caste systems within ants. To begin uncovering the genomic underpinnings of this system, we sequenced the genome of Atta cephalotes using 454 pyrosequencing. One prediction from this ant's lifestyle is that it has undergone genetic modifications that reflect its obligate dependence on the fungus for nutrients. Analysis of this genome sequence is consistent with this hypothesis, as we find evidence for reductions in genes related to nutrient acquisition. These include extensive reductions in serine proteases (which are likely unnecessary because proteolysis is not a primary mechanism used to process nutrients obtained from the fungus), a loss of genes involved in arginine biosynthesis (suggesting that this amino acid is obtained from the fungus), and the absence of a hexamerin (which sequesters amino acids during larval development in other insects). Following recent reports of genome sequences from other insects that engage in symbioses with beneficial microbes, the A. cephalotes genome provides new insights into the symbiotic lifestyle of this ant and advances our understanding of host–microbe symbioses
Monitoring of microbial hydrocarbon remediation in the soil
Bioremediation of hydrocarbon pollutants is advantageous owing to the cost-effectiveness of the technology and the ubiquity of hydrocarbon-degrading microorganisms in the soil. Soil microbial diversity is affected by hydrocarbon perturbation, thus selective enrichment of hydrocarbon utilizers occurs. Hydrocarbons interact with the soil matrix and soil microorganisms determining the fate of the contaminants relative to their chemical nature and microbial degradative capabilities, respectively. Provided the polluted soil has requisite values for environmental factors that influence microbial activities and there are no inhibitors of microbial metabolism, there is a good chance that there will be a viable and active population of hydrocarbon-utilizing microorganisms in the soil. Microbial methods for monitoring bioremediation of hydrocarbons include chemical, biochemical and microbiological molecular indices that measure rates of microbial activities to show that in the end the target goal of pollutant reduction to a safe and permissible level has been achieved. Enumeration and characterization of hydrocarbon degraders, use of micro titer plate-based most probable number technique, community level physiological profiling, phospholipid fatty acid analysis, 16S rRNA- and other nucleic acid-based molecular fingerprinting techniques, metagenomics, microarray analysis, respirometry and gas chromatography are some of the methods employed in bio-monitoring of hydrocarbon remediation as presented in this review
The genome of the water strider Gerris buenoi reveals expansions of gene repertoires associated with adaptations to life on the water.
BACKGROUND: Having conquered water surfaces worldwide, the semi-aquatic bugs occupy ponds, streams, lakes, mangroves, and even open oceans. The diversity of this group has inspired a range of scientific studies from ecology and evolution to developmental genetics and hydrodynamics of fluid locomotion. However, the lack of a representative water strider genome hinders our ability to more thoroughly investigate the molecular mechanisms underlying the processes of adaptation and diversification within this group. RESULTS: Here we report the sequencing and manual annotation of the Gerris buenoi (G. buenoi) genome; the first water strider genome to be sequenced thus far. The size of the G. buenoi genome is approximately 1,000 Mb, and this sequencing effort has recovered 20,949 predicted protein-coding genes. Manual annotation uncovered a number of local (tandem and proximal) gene duplications and expansions of gene families known for their importance in a variety of processes associated with morphological and physiological adaptations to a water surface lifestyle. These expansions may affect key processes associated with growth, vision, desiccation resistance, detoxification, olfaction and epigenetic regulation. Strikingly, the G. buenoi genome contains three insulin receptors, suggesting key changes in the rewiring and function of the insulin pathway. Other genomic changes affecting with opsin genes may be associated with wavelength sensitivity shifts in opsins, which is likely to be key in facilitating specific adaptations in vision for diverse water habitats. CONCLUSIONS: Our findings suggest that local gene duplications might have played an important role during the evolution of water striders. Along with these findings, the sequencing of the G. buenoi genome now provides us the opportunity to pursue exciting research opportunities to further understand the genomic underpinnings of traits associated with the extreme body plan and life history of water striders
Recommended from our members
The genome of the water strider Gerris buenoi reveals expansions of gene repertoires associated with adaptations to life on the water
Background: Having conquered water surfaces worldwide, the semi-aquatic bugs occupy ponds, streams, lakes, mangroves, and even open oceans. The diversity of this group has inspired a range of scientific studies from ecology and evolution to developmental genetics and hydrodynamics of fluid locomotion. However, the lack of a representative water strider genome hinders our ability to more thoroughly investigate the molecular mechanisms underlying the processes of adaptation and diversification within this group.
Results: Here we report the sequencing and manual annotation of the Gerris buenoi (G. buenoi) genome; the first water strider genome to be sequenced thus far. The size of the G. buenoi genome is approximately 1,000Mb, and this sequencing effort has recovered 20,949 predicted protein-coding genes. Manual annotation uncovered a number of local (tandem and proximal) gene duplications and expansions of gene families known for their importance in a variety of processes associated with morphological and physiological adaptations to a water surface lifestyle. These expansions may affect key processes associated with growth, vision, desiccation resistance, detoxification, olfaction and epigenetic regulation. Strikingly, the G. buenoi genome contains three insulin receptors, suggesting key changes in the rewiring and function of the insulin pathway. Other genomic changes affecting with opsin genes may be associated with wavelength sensitivity shifts in opsins, which is likely to be key in facilitating specific adaptations in vision for diverse water habitats.
Conclusions: Our findings suggest that local gene duplications might have played an important role during the evolution of water striders. Along with these findings, the sequencing of the G. buenoi genome now provides us the opportunity to pursue exciting research opportunities to further understand the genomic underpinnings of traits associated with the extreme body plan and life history of water striders
Comparison of seven methods of DNA extraction from termitarium for functional metagenomic DNA library construction
945-951This study evaluated seven methods, used to isolate
metagenomic DNA from termitarium, on the basis of processing time,
DNA yield, purity and suitability for PCR and
restriction digestion. None of the extracted DNA sample was suitable for PCR
and
restriction digestion. Based on higher DNA yield and
lower levels of humic acids, DNA extracted using three methods were further
subjected to purification. Five methods using three
approaches (electro elution, silica membrane based spin column purification
and gel filtration) were evaluated for purification.
The simple method, employing SDS to lyse cells in situ followed by
ethanol
precipitation (E7) and subsequent purification using
Sephadex G-50 (P5) resin yielded high concentration of cloneable DNA from
termitarium sample, has been
successfully used for the construction of metagenomic DNA library
Not Available
Not AvailableBrucella abortus strain S99 is widely used for the preparation of colored, plain, recombinant and smooth lipopolysaccharide antigens for the preparation of Brucella diagnostic kits. The genome of this strain was sequenced and the length of the genome was 3,253,175 bp, with 57.2% G+C content. A total of 3,365 protein coding genes and 53 RNA genes were predicted.Not Availabl
- …