223 research outputs found
Liquid-mesophase-solid transitions: systematics of a density-wave theory
The density-wave theory of Ramakrishnan and Yussouff is used to study phase transitions between liquid, liquid-crystalline, and crystalline phases. The different phases considered are liquid, nematic, smectic, discotic, bcc plastic crystal, orientationally ordered bcc, and a new incommensurate bcc crystal with orientational order. The direct correlation function, required as an input for the theory, is expressed approximately in terms of five generalized Fourier coefficients. The theory is then used to obtain sections through the phase diagram in the five-dimensional space of these coefficients. Simple approximations for the direct correlation function of hard ellipsoids of revolution are used to compare these phase diagrams with those obtained from experiments and numerical simulations. Molecular-field theories of smectic and discotic ordering are reexamined, and, given the potentials they use, it is shown that an orientationally ordered bcc crystal has a lower free energy than either the smectic or the discotic phase. The conditions required to stabilize smectic and discotic phases are examined
Car Cabin Co2, A Safety Issue
Indoor Air Quality has become an important human health and safety concern, clean air is essential for good health. Many studies demonstrate that air recirculation can reduce exposure to nanoparticles in vehicle cabins. However when people occupy confined spaces, air recirculation can lead to carbon dioxide (CO2) accumulation which can potentially lead to deleterious effects on cognitive function. It is known that in-vehicle CO2 concentration tends to increase due to occupant exhalation when the HVAC (Heating, Ventilation and Air Conditioning) air is in recirculation mode. This study establishes a major safety problem associated with automotive; Field experiments were conducted to measure CO2 concentration in a typical automotive cabin
An enhanced space vector PWM strategies for three phase asymmetric multilevel inverter
This work presents the two space vector pulse width modulation (SVPWM-I and SVPWM-II) strategies for eleven-level (11L) asymmetric cascaded H-bridge (CHB) multilevel inverter (MLI). Depending on the isolated structure and nonappearance of capacitor voltage balancing issues, the CHB MLI structure is favoured. These days, the SVPWM control method is accomplished superior consideration among the diverse PWM methods. In common, the SVPWM strategy is realized based on deteriorating higher-level hexagons into a lower level hexagon (2-level). Compared to the classical SVPWM strategy, the proposed SVPWM-I strategy decreases the memory and mathematical burden necessity included within the demonstration of eleven-level SVPWM devoid of losing the inverter output voltage (AC) contour by diminution the number of two-level hexagons. Also, the SVPWM-II strategy is presented, which incredibly diminishes the mathematical endeavours. The presented two SVPWM methods performed on an eleven-level asymmetric CHB multilevel inverter (MLI) by utilizing SIMULINK/MATLAB program tool and are compared with conventional sinusoidal PWM and Third harmonic injection (THI) PWM methods to confirm the proposed SVPWM methods. The proposed SVPWM methods give higher AC RMS voltage and lower harmonic distortion when compared to SPWM and THIPWM methods. To validate the presented two SVPWM control schemes, hardware results are taken on asymmetric eleven-level CHB MLI.https://www.hindawi.com/journals/iteesElectrical, Electronic and Computer Engineerin
The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe
The preponderance of matter over antimatter in the early Universe, the
dynamics of the supernova bursts that produced the heavy elements necessary for
life and whether protons eventually decay --- these mysteries at the forefront
of particle physics and astrophysics are key to understanding the early
evolution of our Universe, its current state and its eventual fate. The
Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed
plan for a world-class experiment dedicated to addressing these questions. LBNE
is conceived around three central components: (1) a new, high-intensity
neutrino source generated from a megawatt-class proton accelerator at Fermi
National Accelerator Laboratory, (2) a near neutrino detector just downstream
of the source, and (3) a massive liquid argon time-projection chamber deployed
as a far detector deep underground at the Sanford Underground Research
Facility. This facility, located at the site of the former Homestake Mine in
Lead, South Dakota, is approximately 1,300 km from the neutrino source at
Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino
charge-parity symmetry violation and mass ordering effects. This ambitious yet
cost-effective design incorporates scalability and flexibility and can
accommodate a variety of upgrades and contributions. With its exceptional
combination of experimental configuration, technical capabilities, and
potential for transformative discoveries, LBNE promises to be a vital facility
for the field of particle physics worldwide, providing physicists from around
the globe with opportunities to collaborate in a twenty to thirty year program
of exciting science. In this document we provide a comprehensive overview of
LBNE's scientific objectives, its place in the landscape of neutrino physics
worldwide, the technologies it will incorporate and the capabilities it will
possess.Comment: Major update of previous version. This is the reference document for
LBNE science program and current status. Chapters 1, 3, and 9 provide a
comprehensive overview of LBNE's scientific objectives, its place in the
landscape of neutrino physics worldwide, the technologies it will incorporate
and the capabilities it will possess. 288 pages, 116 figure
Randomized Phase IIb Study of Brimonidine Drug Delivery System Generation 2 for Geographic Atrophy in Age-Related Macular Degeneration
Purpose: To evaluate the safety and efficacy of repeat injections of Brimonidine Drug Delivery System (Brimo DDS) Generation 2 (Gen 2) containing 400-μg brimonidine in patients with geographic atrophy (GA) secondary to age-related macular degeneration (AMD). Design: A phase IIb, randomized, multicenter, double-masked, sham-controlled, 30-month study (BEACON). Participants: Patients diagnosed with GA secondary to AMD and multifocal lesions with total area of > 1.25 mm2 and ≤ 18 mm2 in the study eye. Methods: Enrolled patients were randomized to treatment with intravitreal injections of 400-μg Brimo DDS (n = 154) or sham procedure (n = 156) in the study eye every 3 months from day 1 to month 21. Main Outcome Measures: The primary efficacy endpoint was GA lesion area change from baseline in the study eye, assessed with fundus autofluorescence imaging, at month 24. Results: The study was terminated early, at the time of the planned interim analysis, because of a slow GA progression rate (∼ 1.6 mm2/year) in the enrolled population. Least squares mean (standard error) GA area change from baseline at month 24 (primary endpoint) was 3.24 (0.13) mm2 with Brimo DDS (n = 84) versus 3.48 (0.13) mm2 with sham (n = 91), a reduction of 0.25 mm2 (7%) with Brimo DDS compared with sham (P = 0.150). At month 30, GA area change from baseline was 4.09 (0.15) mm2 with Brimo DDS (n = 49) versus 4.52 (0.15) mm2 with sham (n = 46), a reduction of 0.43 mm2 (10%) with Brimo DDS compared with sham (P = 0.033). Exploratory analysis showed numerically smaller loss over time in retinal sensitivity assessed with scotopic microperimetry with Brimo DDS than with sham (P = 0.053 at month 24). Treatment-related adverse events were usually related to the injection procedure. No implant accumulation was observed. Conclusions: Multiple intravitreal administrations of Brimo DDS (Gen 2) were well tolerated. The primary efficacy endpoint at 24 months was not met, but there was a numeric trend for reduction in GA progression at 24 months compared with sham treatment. The study was terminated early because of the lower-than-expected GA progression rate in the sham/control group. Financial Disclosure(s): Proprietary or commercial disclosures may be found after the references
Quality indicators for patients with traumatic brain injury in European intensive care units
Background: The aim of this study is to validate a previously published consensus-based quality indicator set for the management of patients with traumatic brain injury (TBI) at intensive care units (ICUs) in Europe and to study its potential for quality measur
- …