179 research outputs found

    Sucrose- and H+-dependent charge movements associated with the gating of sucrose transporter ZmSUT1

    Get PDF
    Background: In contrast to man the majority of higher plants use sucrose as mobile carbohydrate. Accordingly proton-driven sucrose transporters are crucial for cell-to-cell and long-distance distribution within the plant body. Generally very negative plant membrane potentials and the ability to accumulate sucrose quantities of more than 1 M document that plants must have evolved transporters with unique structural and functional features. Methodology/Principal Findings: To unravel the functional properties of one specific high capacity plasma membrane sucrose transporter in detail, we expressed the sucrose/H+ co-transporter from maize ZmSUT1 in Xenopus oocytes. Application of sucrose in an acidic pH environment elicited inward proton currents. Interestingly the sucrose-dependent H+ transport was associated with a decrease in membrane capacitance (Cm). In addition to sucrose Cm was modulated by the membrane potential and external protons. In order to explore the molecular mechanism underlying these Cm changes, presteady-state currents (Ipre) of ZmSUT1 transport were analyzed. Decay of Ipre could be best fitted by double exponentials. When plotted against the voltage the charge Q, associated to Ipre, was dependent on sucrose and protons. The mathematical derivative of the charge Q versus voltage was well in line with the observed Cm changes. Based on these parameters a turnover rate of 500 molecules sucrose/s was calculated. In contrast to gating currents of voltage dependent-potassium channels the analysis of ZmSUT1-derived presteady-state currents in the absence of sucrose (I = Q/τ) was sufficient to predict ZmSUT1 transport-associated currents. Conclusions: Taken together our results indicate that in the absence of sucrose, ‘trapped’ protons move back and forth between an outer and an inner site within the transmembrane domains of ZmSUT1. This movement of protons in the electric field of the membrane gives rise to the presteady-state currents and in turn to Cm changes. Upon application of external sucrose, protons can pass the membrane turning presteady-state into transport currents

    Carnivory on demand: phosphorus deficiency induces glandular leaves in the African liana Triphyophyllum peltatum

    Get PDF
    Triphyophyllum peltatum, a rare tropical African liana, is unique in its facultative carnivory. The trigger for carnivory is yet unknown, mainly because the plant is difficult to propagate and cultivate. This study aimed at identifying the conditions that result in the formation of carnivorous leaves. In vitro shoots were subjected to abiotic stressors in general and deficiencies of the major nutrients nitrogen, potassium and phosphorus in particular, to trigger carnivorous leaves' development. Adventitious root formation was improved to allow verification of the trigger in glasshouse-grown plants. Among all the stressors tested, only under phosphorus deficiency, the formation of carnivorous leaves was observed. These glandular leaves fully resembled those found under natural growing conditions including the secretion of sticky liquid by mature capture organs. To generate plants for glasshouse experiments, a pulse of 55.4 μM α-naphthaleneacetic acid was essential to achieve 90% in vitro rooting. This plant material facilitated the confirmation of phosphorus starvation to be essential and sufficient for carnivory induction, also under ex vitro conditions. Having established the cultivation of T. peltatum and the induction of carnivory, future gene expression profiles from phosphorus starvation-induced leaves will provide important insight to the molecular mechanism of carnivory on demand

    AKT2/3 Subunits Render Guard Cell K+ Channels Ca2+ Sensitive

    Get PDF
    Inward-rectifying K+ channels serve as a major pathway for Ca2+-sensitive K+ influx into guard cells. Arabidopsis thaliana guard cell inward-rectifying K+ channels are assembled from multiple K+ channel subunits. Following the recent isolation and characterization of an akt2/3-1 knockout mutant, we examined whether the AKT2/3 subunit carries the Ca2+ sensitivity of the guard cell inward rectifier. Quantification of RT-PCR products showed that despite the absence of AKT2 transcripts in guard cells of the knockout plant, expression levels of the other K+ channel subunits (KAT1, KAT2, AKT1, and AtKC1) remained largely unaffected. Patch-clamp experiments with guard cell protoplasts from wild type and akt2/3-1 mutant, however, revealed pronounced differences in Ca2+ sensitivity of the K+ inward rectifier. Wild-type channels were blocked by extracellular Ca2+ in a concentration- and voltage-dependent manner. Akt2/3-1 mutants lacked the voltage-dependent Ca2+ block, characteristic for the K+ inward rectifier. To confirm the akt2/3-1 phenotype, two independent knockout mutants, akt2-1 and akt2::En-1 were tested, demonstrating that the loss of AKT2/3 indeed affects the Ca2+ dependence of guard cell inward rectifier. In contrast to AKT2 knockout plants, AKT1, AtKC1, and KAT1 loss-of-function mutants retained Ca2+ block of the guard cell inward rectifier. When expressed in HEK293 cells, AKT2 channel displayed a pronounced susceptibility toward extracellular Ca2+, while the dominant guard cell K+ channel KAT2 was Ca2+ insensitive. Thus, we conclude that the AKT2/3 subunit constitutes the Ca2+ sensitivity of the guard cell K+ uptake channel

    Is gene activity in plant cells affected by UMTS-irradiation? A whole genome approach

    Get PDF
    Mobile phone technology makes use of radio frequency (RF) electromagnetic fields transmitted through a dense network of base stations in Europe. Possible harmful effects of RF fields on humans and animals are discussed, but their effect on plants has received little attention. In search for physiological processes of plant cells sensitive to RF fields, cell suspension cultures of Arabidopsis thaliana were exposed for 24 h to a RF field protocol representing typical microwave exposition in an urban environment. mRNA of exposed cultures and controls was used to hybridize Affymetrix-ATH1 whole genome microarrays. Differential expression analysis revealed significant changes in transcription of 10 genes, but they did not exceed a fold change of 2.5. Besides that 3 of them are dark-inducible, their functions do not point to any known responses of plants to environmental stimuli. The changes in transcription of these genes were compared with published microarray datasets and revealed a weak similarity of the microwave to light treatment experiments. Considering the large changes described in published experiments, it is questionable if the small alterations caused by a 24 h continuous microwave exposure would have any impact on the growth and reproduction of whole plants

    Outer Pore Residues Control the H +

    Full text link

    KDC1, a Novel Carrot Root Hair K+Channel CLONING, CHARACTERIZATION, AND EXPRESSION IN MAMMALIAN CELLS

    Get PDF
    Potassium is an essential nutrient which plays an important role in many aspects of plant growth and development. Plants have developed a number of highly specific mechanisms to take up potassium from the soil; these include the expression of K+ transporters and potassium channels in root cells. Despite the fact that root epidermal and hair cells are in direct contact with the soil, the role of these tissues in K+uptake is not well understood. Here we report the molecular cloning and functional characterization of a novel potassium channel KDC1 which forms part of a new subfamily of plant Kinchannels. Kdc1 was isolated from carrot root RNA andin situ hybridization experiments show Kdc1 to be highly expressed in root hair cells. Expressing the KDC1 protein in Chinese hamster ovary cells identified it as a voltage and pH-dependent inwardly rectifying potassium channel. An electrophysiological analysis of carrot root hair protoplasts confirmed the biophysical properties of the Kdc1 gene product (KDC1) in the heterologous expression system. KDC1 thus represents a major K+ uptake channel in carrot root hair cells

    Guard Cell-Specific Calcium Sensitivity of High Density and Activity SV/TPC1 Channels

    Get PDF
    The slow vacuolar (SV) channel, a Ca2+-regulated vacuolar cation conductance channel, in Arabidopsis thaliana is encoded by the single-copy gene AtTPC1. Although loss-of-function tpc1 mutants were reported to exhibit a stoma phenotype, knowledge about the underlying guard cell-specific features of SV/TPC1 channels is still lacking. Here we demonstrate that TPC1 transcripts and SV current density in guard cells were much more pronounced than in mesophyll cells. Furthermore, the SV channel in motor cells exhibited a higher cytosolic Ca2+ sensitivity than in mesophyll cells. These distinct features of the guard cell SV channel therefore probably account for the published stomatal phenotype of tpc1-
    corecore