
 The slow vacuolar (SV) channel, a Ca 2 +  -regulated vacuolar 
cation conductance channel, in  Arabidopsis thaliana  is 
encoded by the single-copy gene  AtTPC1 . Although loss-of-
function  tpc1  mutants were reported to exhibit a stoma 
phenotype, knowledge about the underlying guard cell-
specifi c features of SV/TPC1 channels is still lacking. Here 
we demonstrate that  TPC1  transcripts and SV current 
density in guard cells were much more pronounced than in 
mesophyll cells. Furthermore, the SV channel in motor cells 
exhibited a higher cytosolic Ca 2 +   sensitivity than in mesophyll 
cells. These distinct features of the guard cell SV channel 
therefore probably account for the published stomatal 
phenotype of  tpc1-2 .  

  Keywords:   Ca 2 +   and pH sensitivity    •    Guard cell    •    Mesophyll cell   
 •    SV/TPC1 channel  .  

   Abbreviations  :    EDX  ,    energy dispersive X-ray   ;     SV  ,    slow vacuolar.         

 Introduction 

 The slow vacuolar (SV) channel and the ATP-dependent proton 
pump represent the major conductances of the vacuolar mem-
brane ( Hedrich et al. 1986 ,  Hedrich and Schroeder 1989 ; for 
a review, see  Pottosin and Schönknecht 2007 ). The SV channel 
discovered in barley mesophyll vacuoles ( Hedrich et al. 1986 ) 
was identifi ed as a cation channel with preference for monova-
lent alkali metal ions in several cell types and species including 
Arabidopsis cell culture vacuoles ( Ivashikina and Hedrich 2005 , 
 Ranf et al. 2008 ). Its unitary channel conductance ranges 
from 26 pS in  Hordeum vulgare  aleurone cells, to 40–90 pS in 
 Arabidopsis thaliana  and  Nicotiana tabacum  mesophyll cells, 
54 pS in  A. thaliana  guard cells and up to 200–280 pS in  Allium 

cepa  and  Vicia faba  guard cells ( Hedrich and Neher 1987 , 
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 Hedrich et al. 1988 ,  Amodeo et al. 1994 ,  Bethke and Jones 1994 , 
 Schulz-Lessdorf and Hedrich 1995 ,  Peiter et al. 2005 ,  Beyhl et al. 
2009 ). The SV channel is activated upon depolarizing voltages 
and elevated cytosolic Ca 2 +   ( Hedrich and Neher 1987 ,  Bethke 
and Jones 1994 ,  Pottosin et al. 1997 ). In the absence of Ca 2 +   in 
the cytosol, the voltage threshold for SV channel activation is 
located far positive to the physiological membrane voltage 
range ( Hedrich and Neher 1987 ,  Pottosin et al. 1997 ,  Pei et al. 
1999 ). With increasing cytosolic Ca 2 +   concentrations, however, 
the voltage gate of the SV channel shifts towards the physio-
logical range of potentials ( Hedrich and Neher 1987 ,  Schulz-
Lessdorf and Hedrich 1995 ,  Beyhl et al. 2009 ,  Pottosin et al. 
1997 ). In addition to cytosolic Ca 2 +  , the voltage sensor of the 
SV channel responds to changes in the K  +   gradient across 
the vacuolar membrane ( Ivashikina and Hedrich 2005 ). 

 Among plant species and cell types the SV channel is ubiqui-
tously expressed (for a review, see  Pottosin and Schönknecht 
2007 ). In  A. thaliana , the SV channel is encoded by the single-
copy gene  AtTPC1  ( Peiter et al. 2005 ). TPC1 is structurally 
related to voltage-dependent cation channels with two  Shaker -
like monomers arranged in tandem ( Furuchi et al. 2001 ). 
Consistent with this, the gain-of-function  fou2  mutant harbors 
a point mutation in TPC1 (D454N) at a channel site that is most 
probably facing the vacuolar lumen. This mutation reduced 
SV channel sensitivity towards luminal Ca 2 +   ( Bonaventure et al. 
2007 ,  Beyhl et al. 2009 ). While loss of TPC1 function seems not 
to result in a mesophyll phenotype ( Ranf et al. 2008 ), the  tpc1-2  
mutant has been reported to result in the incapability of sto-
matal closure in response to high external Ca 2 +   loads ( Peiter 
et al. 2005 ).  Islam et al. (2010)  very recently showed that this 
guard cell phenotype of  tpc1-2  mutants is not related to a func-
tion of TPC1 channels as Ca 2 +  -induced Ca 2 +   release (CICR) 
elements in guard cell vacuoles. Instead, lack of guard cell TPC1 
properties seems to feed back on plasma membrane S-type 
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channel activation in guard cells. This and other fi ndings point 
to the physiological importance of cell type-specifi c transporter 
properties in general and guard cell function in particular. The 
properties of the SV/TPC1 channels in  A. thaliana  guard cells, 
however, have not yet been elucidated. Therefore, we deter-
mined the salt composition and content of  A. thaliana  guard 
cells and explored the SV/TPC1 channel features in comparison 
with mesophyll cells. Cell types differed in the level of  TPC1  
expression, activation kinetics and sensitivity of SV/TPC1 chan-
nels to cytosolic Ca 2 +   and luminal pH. The guard cell-specifi c 
SV channel properties are discussed with respect to their physi-
ological impact.   

 Results  

 Under salt stress, potassium and sodium dominate 
the guard cell cation pool 
 To gain insights into the salt composition and content of 
intact guard cells,  A. thaliana  leaves were excised and frozen in 
liquid nitrogen. Following freeze-drying the vacuolar K, Na and 
Cl content was determined by energy dispersive X-ray (EDX) 
analysis. In motor cells of leaves from  A. thaliana  plants grown 
in the absence of additional soil sodium supply, potassium 
dominated the elements analyzed ( Fig. 1      ). Under these condi-
tions the luminal sodium content reached <10 %  of the K 
equivalents. Cl was only weakly represented in guard cells. This 
halide and the dicarboxylate malate are known to counterbal-
ance the potassium ion moiety in guard cells ( Raschke and 
Hedrich 1987 ,  Negi et al. 2008 ). Thus our EDX analysis suggests 
that under the given growth conditions malate rather than Cl  −   
compensates a large fraction of cellular K  +   ions. 

 In salt stress experiments with Arabidopsis, in general sodium 
loads of 150–300 mM have been used ( Qiu et al. 2002 ). There-
fore, we exposed plants for 3 d to 200 mM NaCl to test whether 
 A. thaliana  guard cell vacuoles are capable of taking advantage 
of Na (ions) to promote stomatal movement under salt stress. 
Under salt stress the reference elements Mg, P and S analyzed 
remained unaffected ( Supplementary Fig. S1 ). The amount 
of Na in guard cells, however, increased by a factor of 7 at the 
expense of K, which dropped by about 50 %  ( Fig. 1 ). In the 
presence of the metabolically ‘cheap’ Cl, this halide reached 
approximately the sum of Na and K content, indicating that in 
the presence of excess Cl the impact of metabolically expensive 
malate is reduced.   

 Unique responses of guard cell SV channels 
to cations 
 EDX analyses suggested that K  +   and Na  +   might represent poten-
tial physiological substrates for the guard cell SV channel. Previ-
ous studies have shown that the SV channel from  A. thaliana  
mesophyll cell vacuoles under symmetrical potassium operates 
as an outward-rectifying cation channel ( Beyhl et al. 2009 ). 
Upon voltage stimulation ( + 70 mV pulses) of wild-type SV 
channels, in mesophyll cell vacuoles outward currents gradually 
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 Fig. 1      Semi-quantitative EDX analysis of ion concentrations in guard 
cell vacuoles. Data were obtained from leaves of four plants each 
grown under control conditions (dark gray) and NaCl stress (gray). 
Columns show mean values with the standard error of six recorded 
spectra. The scale on the left gives the atomic %  of recorded X-ray 
signals. Data were statistically analyzed with a  t -test ( P  < 0.05). Note 
that differences in the relative K  +  , Cl  −   and Na  +   concentrations in the 
vacuole were statistically signifi cant in plants treated with NaCl.  

increased with time, reaching steady state after about 7 min in 
the whole-vacuole mode ( Supplementary Fig. S2 ; cf.  Beyhl 
et al. 2009 ). In contrast, in guard cell vacuoles outward currents 
already appeared as soon as the whole-vacuole confi guration 
was established due to the faster equilibration of the guard cell 
vacuole sap with the pipet medium ( Supplementary Fig. S2 ). 
These voltage-induced guard cell currents appear to be solely 
carried by SV channels, because they were absent with guard 
cell vacuoles of  tpc1-2  loss-of-function mutant plants ( Fig. 3A ).  

 Potassium and protons.   Interestingly, in symmetrical K  +   media 
at pH 7.5, SV currents activated at  + 70 mV about fi ve times 
faster, and current densities were nine times higher in guard 
cells than in mesophyll cells ( Figs. 2           ,  3A, B ). Vacuolar acidi-
fi cation with the guard cell system led to a 7-fold change in 
channel activation kinetics, while changes with mesophyll cell 
vacuoles were only 2-fold ( Fig. 2A, B ;  Supplementary text 1 ), 
pointing to a higher sensitivity of guard cell SV channels towards 
luminal acidifi cation. The distinct pH effect on the SV channel 
activation kinetics in both cell types ( Fig. 2A, C ) probably 
originates from different voltage-dependent gating behavior 
( Supplementary text 1 ).   

 Sodium.   SV channels of cultured  A. thaliana  cells conduct 
Na  +   into the vacuole lumen but not its release into the cytosol 
( Ivashikina and Hedrich 2005 ). When Na  +   accumulates in the 
vacuole of these cultured cells, this alkali metal ion even blocks 
SV channel-mediated K  +   release from the vacuole lumen into 
the cytosol. In contrast to cultured  A. thaliana  cells (cf.  Fig. 3  of 
 Ivashikina and Hedrich 2005 ), Na  +   seems to permeate through 
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guard cell SV channels without affecting the voltage gate much 
( Supplementary Figs. S3, S4; Supplementary text 2 ). The 
elevated inward currents in the presence of a Na  +   gradient, 
however, suggest that other transport characteristics (e.g. 
single channel conductance) have been altered. Due the 
ability of TPC1 to conduct Na  +   across the tonoplast in both 
directions one might predict that under salt stress guard cells 
could drive stomatal movement, with sodium permeating 
through this guard cell transporter.    

 Specifi c interaction of guard cell SV channels 
with Ca 2 +   ions  
 Calcium uptake.   When the potassium gradient was directed out 
of the vacuolar lumen (high [K  +  ] lumen /low [K  +  ] cytosol ), mesophyll 
cell- and guard cell-expressed SV channels conducted inward 
and outward K  +   currents ( Fig. 3C ; cf.  Ivashikina and Hedrich 
2005 ,  Beyhl et al. 2009 ). Under these asymmetrical K  +   condi-
tions the guard cell SV channels activated at about 30 mV less 
depolarized voltages than the mesophyll cell SV channels and 
mediated pronounced inward currents. After replacement of 
cytosolic 30 mM K  +   by 15 mM Ca 2 +   with pH 7.5 at both mem-
brane sides, voltage stimulation ( + 70 mV) of mesophyll cell 
vacuoles did not elicit outward Ca 2 +   currents ( Fig. 4      ; cf.  Beyhl 
et al. 2009 ). Under the same experimental conditions, however, 
outward Ca 2 +   currents of 60 pA/pF were recorded in guard cell 
vacuoles. Introduction of luminal acid loads even caused these 
Ca 2 +   currents in guard cells to increase 2.5-fold ( Fig. 4 ). At lumi-
nal pH 5.5 outward Ca 2 +   currents were observed in mesophyll 
cells too, but characterized by 3-fold smaller amplitude ( Fig. 4 ). 
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 Fig. 2      Different activation kinetics of SV channels in guard cell and 
mesophyll cell vacuoles. (A) SV currents elicited upon a voltage pulse 
to  + 70 mV were normalized to the maximal current level as indicated 
by the dotted line. The holding voltage was  − 60 mV. The currents 
were recorded under symmetrical 150 mM K  +   and pH 7.5. (B) The half-
activation time  t  1/2  was determined at  + 70 mV in the presence of 
symmetrical 150 mM K  +   with pH 7.5 in the bath solution (cytosol) 
and either pH 7.5 or pH 5.5 in the pipet solution (vacuolar lumen) as 
indicated. The number of experiments was  n  = 5–9 and  n  = 5–7 for 
guard cell and mesophyll cell vacuoles, respectively. Filled bars and 
symbols, guard cell vacuoles, GC; open bars and symbols, mesophyll 
cell vacuoles, MC. Error bars give the standard deviation. In A and B the 
bath solution contained 1 mM free Ca 2 +   and no Mg 2 +   while the pipet 
solution was nominally Ca 2 +   free in the presence of 2 mM Mg 2 +  .  

This fi nding implies that in the presence of an acidic vacuolar 
sap and Ca 2 +   as the sole cytosolic cation, guard cell SV channels 
could catalyze Ca 2 +   fl uxes into the vacuolar lumen of higher 
amplitude than mesophyll cell SV channels. Nevertheless this 
SV-mediated Ca 2 +   infl ux into guard cell vacuoles—gained non-
physiological cytosolic Ca 2 +   concentrations—is unlikely to be of 
physiological importance in planta because it counters the 
thermodynamics of physiological Ca 2 +   gradients and tonoplast 
potentials ( Felle 1988 ,  Bethke and Jones 1994 ,  Walker et al. 
1996 ,  Miller et al. 2001 ,  Cuin et al. 2003 ,  Perez et al. 2008 ). The 
calcium dependence was determined here only to develop 
settings suited to provide a cell-type specifi c fi ngerprint of the 
SV channel. Thus the direction and magnitude of the SV chan-
nel-mediated Ca 2 +   currents measured under the given condi-
tions have no physiological relevance. 

 Given the fact that the luminal Ca 2 +   concentration feeds 
back on SV channel-mediated transport of mesophyll cell vacu-
oles ( Beyhl et al. 2009 ), we examined at the single channel level 
whether the vacuolar Ca 2 +   concentration affects the guard cell 
SV channel in a similar way. We exposed excised patches with 
the vacuolar membrane side facing nominally 0 or 1 mM Ca 2 +   
under symmetrical K  +   and H  +   concentrations and measured 
the single channel activity at  − 30 mV. In line with the SV chan-
nel behavior in mesophyll cells, the open probability  P  o  of single 
SV channels in guard cells vanished with an increase in the 
luminal Ca 2 +   concentration ( Supplementary Fig. S5 ).   

 Calcium sensitivity.   SV channels are characterized by pro-
nounced sensitivity to cytosolic Ca 2 +   ( Hedrich and Neher 1987 ; 
for a review, see  Pottosin and Schönknecht 2007 ). To test 
whether the  TPC1  gene product in mesophyll and guard cells 
differs in its Ca 2 +   sensitivity, SV current densities were quanti-
fi ed in both vacuole types in the presence of different cytosolic 
Ca 2 +   concentrations. The derived dose–effect curves could be 
described with a Michaelis–Menten function ( Fig. 5      ). Thereby, 
apparent  K  m  values of 130 and 1,170 µM Ca 2 +   were determined 
for the guard cell and mesophyll SV channels, respectively. The 
difference in apparent  K  m  Ca2 +   indicates that the guard cell SV 
channel is more sensitive towards regulatory cytosolic Ca 2 +  .    

 Higher TPC1 transcript and SV channel numbers 
in guard cells than in mesophyll cells 
 On the basis of the vacuolar surface area represented by the 
membrane capacitance, the wild-type SV current density 
was about 9-fold higher in guard cells than in mesophyll cells 
( Fig. 3B ). This difference could result from a higher number of 
SV channel proteins, an increased unitary conductance and/or 
gating behavior. When we analyzed the single channel proper-
ties of the  TPC1  gene product with symmetrical 150 mM K  +   
( Fig. 6A      ), the unitary conductance of the SV channel was simi-
lar in both cell types ( Table 1  ). Note that pH changes affected 
the unitary SV conductance in a cell type-independent manner 
( Table 1 ). However, single SV channel gating was different in 
guard cell and mesophyll cells ( Fig. 6A ) leading to slightly 
reduced open probability  P  o  of single SV channels in guard cells 
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compared with those in mesophyll cells (cf.  Fig. 6A ,  Supple-
mentary Fig. S5 ;  Fig. 5  of  Beyhl et al. 2009 ). Instead quantitative 
real-time PCR analysis showed that the number of  TPC1  tran-
scripts was about 4-fold higher in guard cells than in mesophyll 
cells ( Fig. 6B ). Thus the difference in whole-vacuole SV current 
amplitude very probably results from a higher SV channel 
density in the vacuole of the motor cell type ( Figs. 3 ,  6 ).   

 Do SV channel properties originate from 
differential RNA splicing? 
 Differential post-transcriptional (e.g. RNA splicing, RNA editing) 
and/or post-translational modifi cations could account for 
the cell-type specifi c TPC1 features identifi ed. To differentiate 
between these possibilities, we searched for potential splicing 
products with  TPC1  transcripts isolated from guard cells 
and mesophyll cells ( Supplementary Fig. S6 ). Seven different 

primer sets were designed for the generation of putative PCR 
fragments with an expected size of 444–591 bp distributed all 
over the whole non-spliced  TPC1  mRNA ( Supplementary 
Fig. S6A ). When these primers were employed with mRNA 
purifi ed from guard cells and mesophyll cells in PCR assays, 
PCR products of the same base pair length and sequence 
were obtained from the  TPC1  transcripts of both cell types 
( Supplementary Fig. S6B ). Thus the unique features of the 
guard cell SV channels are most probaby not related to post-
transcriptional modifi cations.    

 Discussion 

 Initial SV channel studies were performed on mesophyll 
vacuoles from  H. vulgare  ( Hedrich et al. 1986 ). Differences in 
SV channel conductance between 26 and 280 pS suggested 
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 Fig. 3      Comparison of macroscopic SV channel currents from guard cell (GC) and mesophyll cell (MC) vacuoles. (A) Representative current traces 
recorded from GC and MC vacuoles of wild-type and  tpc1-2  mutant plants under symmetrical 150 mM K  +   and pH 7.5 are shown. For channel 
activation, voltage pulses were applied in the range from  − 80 to  + 100 mV in 15 mV steps from a holding voltage of  − 60 mV. (B, C) Steady-state SV 
current densities determined at different luminal pH for both cell types were plotted against the respective voltage. The right-sided bar diagram 
in B shows the current densities at  + 100 mV. Data points represent the mean  ±  SE. The number of experiments in B was  n  GC pH 7.5  = 15,  n  GC pH 5.5  = 9, 
 n  MC pH 7.5  = 5,  n  MC pH 5.5  = 8 and in C  n  GC  = 5 and  n  MC  = 3. In B current measurements were performed under symmetrical 150 mM K  +   with pH 7.5 in 
the bath solution and either pH 7.5 or pH 5.5 in the pipet solution. In C macroscopic currents were recorded with pH 7.5 on both sides of 
the vacuolar membrane and in the presence of a K  +   gradient (30 mM K  +   in the cytosol and 150 mM K  +   in the vacuolar lumen). In A–C the bath 
solution contained 1 mM free Ca 2 +   while the pipet solution was nominally Ca 2 +   free.  
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variability in the encoding genes ( Hedrich and Neher 1987 , 
 Hedrich et al. 1988 ,  Amodeo et al. 1994 ,  Bethke and Jones 1994 , 
 Schulz-Lessdorf and Hedrich 1995 ,  Peiter et al. 2005 ,  Beyhl 
et al. 2009 ).  Peiter  et al . (2005) , however, recognized that the 
 A. thaliana  SV channel is encoded by the single copy gene 
 TPC1 . The diversity of ion channel properties and function 

 Table 1      Single channel conductance  γ  of SV channels from vacuoles of 
guard cells and mesophyll cells  

  γ  GC  in pS  γ  MC  in pS 

pH cytosol/vacuole  7.5 76  ±  10 (10) 70  ±  11 (3) 

pH cytosol  7.5/pH vacuole  5.5 116  ±  5 (3) 110  ±  8 (4) 

  The unitary conductance was determined from single channel fl uctuations 
recorded at 3–6 different membrane voltages in 10 mV steps in the range of  − 10 
to  − 60 mV under symmetrical or asymmetrical pH. Otherwise the same solutions 
were used as in  Fig. 2 . Current measurements were performed from excised 
membrane patches with the cytoplasmic side of the vacuolar membrane facing 
the bath medium. Data represent the mean  ±  SD. The number of experiments is 
given in parentheses.  
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 Fig. 5      Cytosolic Ca 2 +   dependence of the SV channels from mesopyll 
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concentrations. SV current densities measured at  + 100 mV were 
normalized to the value recorded with guard cell vacuoles in the 
presence of 1 mM Ca 2 +   and plotted against the respective free cytosolic 
Ca 2 +   concentration. Open and fi lled symbols represent data obtained 
from mesophyll and guard cell vacuoles, respectively, in the whole-
vacuole confi guration. Solid curves give the fi t of the data points with 
a Michaelis–Menten function. Error bars represent the standard 
deviation.  
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concentrations (pH 7.5). The free Ca 2 +   concentration of the bath and 
pipet medium was the same as in  Figs. 2  and  3 . (B) The  TPC1  transcript 
level in guard cells and mesophyll cells was analyzed with quantitative 
real-time PCR. The number of experiments was  n  = 4 ( ± SE) for both 
cell types.  
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 Fig. 4      SV channel-mediated Ca 2 +   transport into guard cell (GC) and 
mesophyll cell (MC) vacuoles. (A) Representative Ca 2 +   current traces 
were evoked upon a voltage pulse to  + 70 mV from a holding voltage of 
 − 60 mV in the whole-vacuolar confi guration. (B) Averaged steady-
state current densities were determined at  + 70 mV from current traces 
shown in A. The number of experiments was for luminal pH 7.5  n  MC  = 3 
and  n  GC  = 5 and for luminal pH 5.5  n  MC  = 7 and  n  GC  = 5. Error bars the 
give standard deviation. (A, B) The pipet medium contained 150 mM 
K  +   and was nominally Ca 2 +   free. The bath medium contained 15 mM 
Ca 2 +   in the absence of K  +  . The experiments were performed with pH 
7.5 in the bath solution and either pH 7.5 or pH 5.5 in the pipet solution 
as indicated.  

could also be broadened by the presence of more than one 
alternatively spliced exon along with RNA editing at multiple 
sites. Our detailed fragment analyses with  TPC1  mRNA, how-
ever, revealed that the size and sequence of  TPC1  transcripts in 
mesophyll and guard cells of  A. thaliana  were identical ( Sup-
plementary Fig. S6 ). These fi ndings indicate that (i) interaction 
with regulatory proteins or other mediators differentially 
expressed in guard and mesophyll cells, and/or (ii) cell type-
specifi c post-translational modifi cations [it should be noted 
that cell type-specifi c differences in surface charge densities 
might also be involved ( Pottosin et al. 2005 )] rather than  TPC1  
RNA splicing and editing, most probably account for the differ-
ent features of the most prominent vacuolar cation channel in 
the two  A. thaliana  cell types studied. 
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 SV channels operate as outward rectifi ers with physiological 
luminal Ca 2 +   concentration, apart from conditions where the 
K  +   gradient is directed out of the vacuole into the cytosol 
( Hedrich and Neher 1987 ,  Hedrich et al. 1988 ,  Bethke and 
Jones 1994 ,  Schulz-Lessdorf and Hedrich 1995 ,  Gambale et al. 
1996 ,  Pottosin et al. 1997 ,  Ivashikina and Hedrich 2005 ,  Beyhl 
et al. 2009 ). In the latter scenario in  A. thaliana  cell culture 
and mesophyll cell vacuoles with K  +   as the sole monovalent 
cation in the solutions, TPC1 channels conduct time- and 
voltage-dependent inward and outward K  +   currents ( Fig. 3C ) 
( Ivashikina and Hedrich 2005 ,  Beyhl et al. 2009 ). Under the same 
conditions wild-type guard cell TPC1 channels were character-
ized by similar unitary conductance and voltage-dependent 
gating ( Fig. 3 ,  Table 1 ;  Supplementary Fig. S5 ). Wild-type 
guard cell SV channels also respond to a rise in luminal Ca 2 +   
with a strong decline in single channel activity pointing to 
a similar luminal Ca 2 +   sensitivity of TPC1 in mesophyll and 
guard cell vacuoles ( Supplementary Fig. S5 ). However, in com-
parison with mesophyll cells, guard cell SV channels displayed 
faster activation kinetics, higher luminal pH and cytosolic Ca 2 +   
sensitivity and lower absolute single-channel open probability 
( Figs. 2 ,  3 ,  Supplementary Fig. S5 ; cf.  Beyhl et al. 2009 ). Conse-
quently, the 9-fold higher SV current density detected in guard 
cells than mesophyll cells may arise primarily from the 4-fold 
higher  TPC1  transcript number ( Figs. 3 ,  6B ). 

 Previous studies demonstrated that cytosolic Ca 2 +   acts as 
a gating modifi er of SV channels. With increasing cytosolic Ca 2 +   
levels SV channels are stimulated by shifting the activation 
threshold to more negative voltages ( Hedrich and Neher 1987 , 
 Schulz-Lessdorf and Hedrich 1995 ,  Pottosin et al. 1997 ,  Pei et al. 
1999 ,  Beyhl et al. 2009 ). In the present work, the  A. thaliana  
guard cell-expressed SV/TPC1 channel exhibited a 10-fold 
higher Ca 2 +   affi nity than the mesophyll-expressed channel 
(apparent  K  m GC  = 130 µM vs.  K  m MC  = 1,170 µM;  Fig. 5 ). The  K  m  
values were determined in the absence of cytosolic Mg 2 +   and 
would point to a very low cytosolic Ca 2 +   sensitivity of the 
 A. thaliana  TPC1 channels. Future studies of the Mg 2 +   and ATP 
dependency ( Pei et al. 1999 ,  Carpaneto et al. 2001 , Bethke 
and Jones 1997) will have to prove whether and how protein 
phosphorylation/dephosphorylation events (Allen and Sanders 
1995, Bethke and Jones 1997,  Xu et al. 2006 ,  Geiger et al. 2009a ) 
affect the cytosolic Ca 2 +   sensitivity of TPC1. 

 In contrast to guard cells, no signifi cant TPC1-mediated Ca 2 +   
currents into the vacuole were monitored in mesophyll cells 
at luminal pH 7.5, probably because of the lower channel 
density and Ca 2 +   sensitivity in this cell type ( Fig. 4 ) ( Beyhl et al. 
2009 ). The guard cell-specifi c properties of the SV/TPC1 chan-
nel identifi ed very probably account for the external Ca 2 +   
stomatal phenotype of the loss-of-function mutant  tpc1-2  
( Peiter et al. 2005 ,  Islam et al. 2010 ). However, cytosolic 
Ca 2 +   oscillations induced in guard cells of epidermal leaf frag-
ments during external calcium up-shocks appear to be not 
affected by  tpc1-2  loss-of-function ( Allen et al. 2001 ,  Islam et al. 
2010 ). Instead, anion channel activation seems to be reduced 
in  tpc1-2  plants. These fi ndings suggest that TPC1 is involved in 

mediating rather than generating cytosolic Ca 2 +   signals during 
external Ca 2 +  -induced stomatal closure ( Islam et al. 2010 ). 
Future studies will thus have to explore how the guard cell-
specifi c SV channel features, for example via the cytosolic 
Ca 2 +   sensitivity, are linked to anion channel activation during 
external calcium loads.   

 Materials and Methods  

 Plant material and vacuole isolation 
 Growth conditions of  A. thaliana  ecotype Columbia (Col-0) 
and the  tpc1-2  mutant, as well as preparation of mesophyll cell 
vacuoles were essentially as described previously ( Beyhl et al. 
2009 ). Guard cell protoplasts were isolated and used for release 
of vacuoles essentially as described in  Beyhl et al. (2009)  and 
 Geiger et al. (2009b) .   

 Electrophysiology 
 Patch–clamp experiments on vacuoles were performed either 
in the whole-vacuole or in the excised patch confi guration 
essentially as described previously ( Ivashikina and Hedrich 
2005 ,  Beyhl et al. 2009 ), and according to the convention for 
electrical measurements on endomembranes ( Bertl et al. 1992 ). 
Further details of data acquisition and analysis are given in the 
 Supplementary Materials and Methods .   

 Patch–clamp solutions 
 Bath and pipet solutions were composed of 2 mM dithiothre-
itol (DTT), varied KCl/CaCl 2  concentrations and set to an 
osmolality of 400 mosmol kg  − 1  with  D -sorbitol. Vacuolar side 
media usually also contained 2 mM MgCl 2 . pH values were 
adjusted to pH 7.5 with 10 mM HEPES/Tris or to pH 5.5 with 
10 mM MES/Tris. The designated free Ca 2 +   concentration of 
the media was adjusted upon certain Ca 2 +   and EGTA concen-
trations obtained from the calculation with webmaxc standard 
( http://www.stanford.edu/∼cpatton/webmaxc/webmaxcS
.htm ). Details about the composition of the solutions are given 
in the fi gure legends.    

 Supplementary data 

  Supplementary data  are available at PCP online.   
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