138 research outputs found

    A DOAS Study on the Oxidation Mechanism of Aromatic Hydrocarbons under Simulated Atmospheric Conditions

    Get PDF
    Das Ziel dieser Arbeit war es das Verständnis der OH-Radikal initiierten Oxidation aromatischer Kohlenwasserstoffe (Benzol, Toluol, p-Xylol (BTX) und 1,3,5-Trimethylbenzol (TMB)) zu verbessern. Diese Mechanismen gelten als Hauptunsicherheitsfaktoren in Chemie-Modellen zur Erfassung der Photooxidantienbildung aus Stadtluft. Differentielle Optische Absorptions Spektroskopie (DOAS) wurde in einer systematischen Smog-Kammer Studie am Europäischen Photoreaktor (EUPHORE), CEAM-Institute, Valencia/Spanien angewandt. Das vorhandene DOAS-System wurde hierzu weiterentwickelt. Die Verzweigungsverhältnisse (Yields) der ringerhaltenden Produkte (Phenol von Benzol, Phenole und Aldehyde von p-Xylol und TMB) sowie Glyoxal (von BTX) wurden bestimmt. Der Phenol-Yield aus Benzol (F(PHEN) = 53) wurde zu mehr als dem doppelten des Literaturwertes bestimmt. Weiterhin wurde der Ringspaltungsmechanismus über das Bicycloalkyl-Radikal als einer der Hauptwege in der Oxidation von BTX identifiziert. Es wurde gezeigt, daß die Ergebnisse dieser Arbeit repräsentativ sind für die Atmosphäre. Abweichungen von den atmosphärisch relevanten Reaktionswegen von BTX und TMB wurden in Anwesenheit von hohen NOx-Konzentrationen (einige ppm) beobachtet. Die Resultate dieser Arbeit werden von heute verwendeten Aromat-Mechanismen in Chemie Modellen nur unzureichend beschrieben. Die Ergebnisse zeigen, daß der Beitrag von Aromaten zur Bildung von Photooxidantien (z.B. Ozon) bislang unterschätzt wird

    Radicals and aerosols in the troposphere and lower stratosphere

    Get PDF
    The remote tropical free troposphere (FT) is one of the most relevant atmospheric environments on Earth. About 75\% of the global tropospheric O3 and CH4 loss occurs at tropical latitudes. Tropospheric bromine and iodine catalytically destroy tropospheric O3_{3}, oxidize atmospheric mercury, and modify oxidative capacity, and aerosols. Oxygenated VOCs (OVOC) modify HOx_{x} (= OH + HO2_{2}), NOx (= NO + NO2_{2}), tropospheric O3_{3}, aerosols, and are a sink for BrOx_{x} (= Br + BrO). Until recently, atmospheric models were untested for lack of vertically resolved measurements of BrO and IO radicals in the tropical troposphere. BrO and IO are highly reactive trace gases. Even very low concentrations (parts per trillion1 pptv = 10−12^{-12} volume mixing ratio) can significantly modify the lifetime of climate active gases, and determine (bromine) the rate limiting step of mercury oxidation in air (that is washed out, and subsequently bio-accumulates in fish). Analytical challenges arise when these radicals modify in sampling lines. Sensitive yet robust, portable, and inherently calibrated measurements directly in the open atmosphere have recently been demonstrated by means of limb-measurements of scattered solar photons by the University of Colorado Airborne Multi-AXis DOAS instrument (CU AMAX-DOAS) from research aircraft. The CU AMAX-DOAS instrument is optimized to (1) locate BrO, IO and glyoxal (a short lived OVOC) in the troposphere, (2) decouple stratospheric absorbers, (3) maximize sensitivity at instrument altitude, (4) facilitate altitude control and (5) enable observations over a wide range of solar zenith angles. Further, (6) the filling-in of Fraunhofer lines (Ring-effect) by Raman Scattering offers interesting opportunities for radiative closure studies to assess the effects of aerosols on Climate

    Garcinol from Garcinia indica inhibits HIV-1 reverse transcriptase-associated ribonuclease H

    Get PDF
    The bioactive components of Garcinia indica, garcinol (camboginol), and isogarcinol (cambogin), are suitable drug candidates for the treatment of various human diseases. HIV-1-RNase H assay was used to study the RNase H inhibition by garcinol and isogarcinol. Docking of garcinol into the active site of the enzyme was carried out to rationalize the difference in activities between the two compounds. Garcinol showed higher HIV-1-RNase H inhibition than the known inhibitor RDS1759 and retained full potency against the RNase H of a drug-resistant HIV-1 reverse transcriptase form. Isogarcinol was distinctly less active than garcinol, indicating the importance of the enolizable β-diketone moiety of garcinol for anti-RNase H activity. Docking calculations confirmed these findings and suggested this moiety to be involved in the chelation of metal ions of the active site. On the basis of its HIV-1 reverse transcriptase-associated RNase H inhibitory activity, garcinol is worth being further explored concerning its potential as a cost-effective treatment for HIV patients

    ProteinsPlus: a web portal for structure analysis of macromolecules

    Get PDF
    With currently more than 126 000 publicly available structures and an increasing growth rate, the Protein Data Bank constitutes a rich data source for structure-driven research in fields like drug discovery, crop science and biotechnology in general. Typical workflows in these areas involve manifold computational tools for the analysis and prediction of molecular functions. Here, we present the ProteinsPlus web server that offers a unified easy-to-use interface to a broad range of tools for the early phase of structure-based molecular modeling. This includes solutions for commonly required pre- processing tasks like structure quality assessment (EDIA), hydrogen placement (Protoss) and the search for alternative conformations (SIENA). Beyond that, it also addresses frequent problems as the generation of 2D-interaction diagrams (PoseView), protein–protein interface classification (HyPPI) as well as automatic pocket detection and druggablity assessment (DoGSiteScorer). The unified ProteinsPlus interface covering all featured approaches provides various facilities for intuitive input and result visualization, case-specific parameterization and download options for further processing. Moreover, its generalized workflow allows the user a quick familiarization with the different tools. ProteinsPlus also stores the calculated results temporarily for future request and thus facilitates convenient result communication and re-access. The server is freely available at http://proteins.plus

    Airborne MAX-DOAS Measurements Over California: Testing the NASA OMI Tropospheric NO2 Product

    Get PDF
    Airborne Multi-AXis Differential Optical Absorption Spectroscopy (AMAX-DOAS) measurements of NO2 tropospheric vertical columns were performed over California for two months in summer 2010. The observations are compared to the NASA Ozone Monitoring Instrument (OMI) tropospheric vertical columns (data product v2.1) in two ways: (1) Median data were compared for the whole time period for selected boxes, and the agreement was found to be fair (R = 0.97, slope = 1.4 +/- 0.1, N= 10). (2) A comparison was performed on the mean of coincident AMAX-DOAS measurements within the area of the corresponding OMI pixels with the tropospheric NASA OMI NO2 assigned to that pixel. The effects of different data filters were assessed. Excellent agreement and a strong correlation (R = 0.85, slope = 1.05 +/- 0.09, N= 56) was found for (2) when the data were filtered to eliminate large pixels near the edge of the OMI orbit, the cloud radiance fraction was2 km, and a representative sample of the footprint was taken by the AMAX-DOAS instrument. The AMAX-DOAS and OMI data sets both show a reduction of NO2 tropospheric columns on weekends by 38 +/- 24% and 33 +/- 11%, respectively. The assumptions in the tropospheric satellite air mass factor simulations were tested using independent measurements of surface albedo, aerosol extinction, and NO2 profiles for Los Angeles for July 2010 indicating an uncertainty of 12%

    First detection of ammonia (NH₃) in the Asian summer monsoon upper troposphere

    Get PDF
    Ammonia (NH3) has been detected in the upper troposphere by the analysis of averaged MIPAS (Michelson Interferometer for Passive Atmospheric Sounding) infrared limb-emission spectra. We have found enhanced amounts of NH3 within the region of the Asian summer monsoon at 12–15 km altitude. Three-monthly, 10° longitude  ×  10° latitude average profiles reaching maximum mixing ratios of around 30 pptv in this altitude range have been retrieved, with a vertical resolution of 3–8 km and estimated errors of about 5 pptv. These observations show that loss processes during transport from the boundary layer to the upper troposphere within the Asian monsoon do not deplete the air entirely of NH3. Thus, ammonia might contribute to the so-called Asian tropopause aerosol layer by the formation of ammonium aerosol particles. On a global scale, outside the monsoon area and during different seasons, we could not detect enhanced values of NH3 above the actual detection limit of about 3–5 pptv. This upper bound helps to constrain global model simulations
    • …
    corecore