26 research outputs found

    Telmisartan Modulates the Oral Mucositis Induced by 5-Fluorouracil in Hamsters

    Get PDF
    Oral mucositis (OM) is a common adverse effect resulting from cancer therapy. The OM it has implications that may compromise oncologic treatment and decrease the patient’s quality of life. The therapeutic options to prevent or treat the symptoms of OM are scarce; there is no effective therapy that improves the symptoms. Based on the need for further research for the treatment of OM, the present study objective was to evaluate the effect of telmisartan (TELM) on the OM induced by 5-fluorouracil (5-FU), using as animal model Golden Syrian hamsters. 5-FU followed by mechanical trauma on day 4 was used to induce OM in hamsters. Euthanasia occurred on the day 10. The experiments were constituted by the groups saline, mechanical trauma, 5-FU, and TELM in three doses (1, 5, or 10 mg/kg). Macroscopic, histopathological, and immunohistochemical analyses as well as immunofluorescence experiments were performed on the oral mucosa of the animals. The samples also were used for analysis enzyme-linked immunosorbent assays and quantitative real-time polymerase chain reactions (qPCR). TELM (5 or 10 mg/kg) was able to reduce the inflammatory ulceration and infiltration in the oral mucosa of the animals, decreasing the levels of the cytokines TNF-α and IL-1β. These treatments was minimize the immunostaining for cyclooxygenase-2, matrix metalloproteinase-9, transforming growth factor-β, and smad 2/3. The nuclear transcription factor kappa B (NFκB) p65 and inducible nitric oxide synthase were reduced in the oral mucosa. Finally, TELM (10 mg/kg) increased the PPARγ gene expression and reduced STAT1 and NFκB p65 gene expression relative to the 5-FU group. Therefore, TELM prevents the OM produced by 5-FU on animal model

    Pervasive gaps in Amazonian ecological research

    Get PDF

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Tropical Fruit Pulps: Processing, Product Standardization and Main Control Parameters for Quality Assurance

    Get PDF
    ABSTRACT Fruit pulp is the most basic food product obtained from fresh fruit processing. Fruit pulps can be cold stored for long periods of time, but they also can be used to fabricate juices, ice creams, sweets, jellies and yogurts. The exploitation of tropical fruits has leveraged the entire Brazilian fruit pulp sector due mainly to the high acceptance of their organoleptic properties and remarkable nutritional facts. However, several works published in the last decades have pointed out unfavorable conditions regarding the consumption of tropical fruit pulps. This negative scenario has been associated with unsatisfactory physico-chemical and microbiological parameters of fruits pulps as outcomes of little knowledge and improper management within the fruit pulp industry. There are protocols for delineating specific identity and quality standards (IQSs) and standardized good manufacturing practices (GMP) for fruit pulps, which also embrace standard operating procedures (SOPs) and hazard analysis and critical control points (HACCP), although this latter is not considered mandatory by the Brazilian legislation. Unfortunately, the lack of skilled labor, along with failures in complying established protocols have impaired quality of fruit pulps. It has been necessary to collect all information available with the aim to identify the most important hazards within fruit pulp processing lines. Standardizing methods and practices within the Brazilian fruit pulp industry would assurance high quality status to tropical fruit pulps and the commercial growth of this vegetal product towards international markets

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost

    Conforto ambiental de bezerros bubalinos (Bubalus bubalis Linnaeus, 1758) em sistemas silvipastoris na Amaz\uf4nia Oriental

    No full text
    Foi analisado o efeito de dois sistemas silvipastoris nos índices de conforto ambiental e alterações nos parâmetros fisiológicos de bezerros bubalinos criados na Embrapa Amazônia Oriental, Belém-PA (clima Afi), no Período 1 (abril a setembro/2007) e Período 2 (outubro/2007 a março/2008). Foram inseridos onze bezerros no Sistema Silvipastoril 1 (SSP1), que apresentava sombreamento útil nas pastagens de 18 a 21%, e oito no Sistema Silvipastoril 2 (SSP2), sem sombreamento, com lago para banho. Foram mensuradas as variáveis fisiológicas: temperatura retal (TR), frequência respiratória (FR), temperatura da pele (TP), e calculados o Índice de Temperatura e Umidade (ITU) e Índice de Conforto de Benezra (ICB), nos dois períodos experimentais, comparados pelo Teste Tukey (P < 0,05). O ITU apresentou diferença estatística entre horários (P < 0,05) e período do ano (P < 0,05), e oscilou de 73,5 ± 1,3 até 82,2 ± 0,8. A TR apresentou diferença estatística entre horários e períodos do ano (P < 0,05), com amplitude de 38,3 ± 0,26 a 39,3 ± 0,38 °C. A FR apresentou diferença significativa entre horários (P < 0,05), com amplitude de 32,2 ± 9,2 a 56,5 ± 19,0 mov min-1, consideradas acima dos níveis normais, enquanto a TP foi diferente estatisticamente entre períodos e horários (P < 0,05) e variou de 23,6 ± 8,3 a 31,7 ± 5,4 °C. Nos Períodos 1 e 2 e nos dois SSP's, os ICBs estiveram acima do valor ideal, variando de 2,46 ± 0,33 a 3,31 ± 0,62 (SSP1) e 2,42 ± 0,30 a 3,45 ± 0,66 (SSP2)
    corecore