27 research outputs found

    Novel native peptide ligation methods and sequential assembly strategies for protein total synthesis

    No full text
    Les peptides et les protéines jouent un rôle central dans les processus biologiques. Les méthodes de production de ces molécules se sont fortement développées dans le but de déterminer leur structure, comprendre leurs fonctions et développer de nouvelles thérapies. En particulier, la synthèse chimique des protéines s’est fortement développée dans les années 1960 avec l’introduction de la chimie peptidique en phase solide (SPPS) par B. Merrifield. Depuis les années 1990, la combinaison de méthodes de ligation chimique natives et de stratégies d’assemblage séquentielles et convergentes ont permis la synthèse de nombreuses protéines. Cependant, la synthèse de protéines de haut poids moléculaires reste un défi synthétique. Il est donc important de développer de nouveaux systèmes de ligation chimique et des stratégies d’assemblage plus performantes. Une nouvelle méthode de ligation native, la ligation SEA, repose sur la capacité des segments bis(2-sulfanylethyl)amido (SEA) à réagir en milieu aqueux avec des cystéinyl peptides. Différents outils chimiques basés sur l’utilisation du groupement SEA ont été développés dans cette thèse. La première partie de ce manuscrit présente une méthode d’assemblage séquentiel de segments peptidiques en solution s’effectuant du N-terminal vers le C-terminal. Cette méthode a permis la synthèse du domaine N-terminal du facteur de croissance des hépatocytes (HGF). Afin de surmonter les limitations de l’assemblage en solution, la seconde partie de cette thèse porte sur le développement d’un procédé de synthèse de protéines par ligation native séquentielle en phase solide du N-terminal vers le C-terminal. Enfin, une dernière partie exploite la réactivité des segments bis(2-selanylethyl)amido (SeEA) et leur potentiel pour la synthèse de nouveaux échafaudages peptidiques.Peptides and proteins play a crucial role in all fundamental biological processes. Chemical methods have been developed for the production of peptide and proteins which allows understanding their structures, functions and the development of novel therapies. In particular, the introduction of the Solid Phase Peptide Synthesis (SPPS) by Merrifield in the 60s, followed by the emergence of peptide ligation methods in the 90s have opened the way to the preparation of synthetic proteins. Recently, the developments of sequential and convergent assembly methods give access to large synthetic proteins. However, the synthesis of high molecular weight proteins remains a challenging task. Therefore, it is necessary to develop novel peptide ligation methods and assembly scheme strategies. Central to this PhD work is the recently developed bis(2-sulfanylethyl)amido (SEA) native peptide ligation method. The first part of this manuscript describes an efficient sequential assembly method in the N-to-C direction for protein synthesis in solution which was used for producing a functional N domain of Hepatocyte Growth Factor‎ (HGF). We next examined also a solid phase method for the sequential native ligation of unprotected peptide segments in the N-to-C direction to overcome the limitations in solution. The last part of the manuscript reports the chemicals properties of bis(2-selanylethyl)amido (SeEA) peptide segments and their usefulness for building novel peptide scaffolds

    Novel native peptide ligation methods and sequential assembly strategies for protein total synthesis

    Get PDF
    Les peptides et les protéines jouent un rôle central dans les processus biologiques. Les méthodes de production de ces molécules se sont fortement développées dans le but de déterminer leur structure, comprendre leurs fonctions et développer de nouvelles thérapies. En particulier, la synthèse chimique des protéines s’est fortement développée dans les années 1960 avec l’introduction de la chimie peptidique en phase solide (SPPS) par B. Merrifield. Depuis les années 1990, la combinaison de méthodes de ligation chimique natives et de stratégies d’assemblage séquentielles et convergentes ont permis la synthèse de nombreuses protéines. Cependant, la synthèse de protéines de haut poids moléculaires reste un défi synthétique. Il est donc important de développer de nouveaux systèmes de ligation chimique et des stratégies d’assemblage plus performantes. Une nouvelle méthode de ligation native, la ligation SEA, repose sur la capacité des segments bis(2-sulfanylethyl)amido (SEA) à réagir en milieu aqueux avec des cystéinyl peptides. Différents outils chimiques basés sur l’utilisation du groupement SEA ont été développés dans cette thèse. La première partie de ce manuscrit présente une méthode d’assemblage séquentiel de segments peptidiques en solution s’effectuant du N-terminal vers le C-terminal. Cette méthode a permis la synthèse du domaine N-terminal du facteur de croissance des hépatocytes (HGF). Afin de surmonter les limitations de l’assemblage en solution, la seconde partie de cette thèse porte sur le développement d’un procédé de synthèse de protéines par ligation native séquentielle en phase solide du N-terminal vers le C-terminal. Enfin, une dernière partie exploite la réactivité des segments bis(2-selanylethyl)amido (SeEA) et leur potentiel pour la synthèse de nouveaux échafaudages peptidiques.Peptides and proteins play a crucial role in all fundamental biological processes. Chemical methods have been developed for the production of peptide and proteins which allows understanding their structures, functions and the development of novel therapies. In particular, the introduction of the Solid Phase Peptide Synthesis (SPPS) by Merrifield in the 60s, followed by the emergence of peptide ligation methods in the 90s have opened the way to the preparation of synthetic proteins. Recently, the developments of sequential and convergent assembly methods give access to large synthetic proteins. However, the synthesis of high molecular weight proteins remains a challenging task. Therefore, it is necessary to develop novel peptide ligation methods and assembly scheme strategies. Central to this PhD work is the recently developed bis(2-sulfanylethyl)amido (SEA) native peptide ligation method. The first part of this manuscript describes an efficient sequential assembly method in the N-to-C direction for protein synthesis in solution which was used for producing a functional N domain of Hepatocyte Growth Factor‎ (HGF). We next examined also a solid phase method for the sequential native ligation of unprotected peptide segments in the N-to-C direction to overcome the limitations in solution. The last part of the manuscript reports the chemicals properties of bis(2-selanylethyl)amido (SeEA) peptide segments and their usefulness for building novel peptide scaffolds

    Concise synthesis of di- and trisaccharides related to the O-antigens from Shigella flexneri serotypes 6 and 6a, based on late stage mono-O-acetylation and/or site-selective oxidation

    No full text
    International audienceShigella flexneri serotypes 6 and 6a are closely related bacteria causing shigellosis in humans. Their O-antigens are {→4)-β-d-GalpA-(1→3)-β-d-GalpNAc-(1→2)-[3Ac/4Ac]-α-l-Rhap-(1→2)-α-l-Rhap-(1→}n acidic polysaccharides ({ABAcCD}n), which only differ in the degree of O-acetylation. A concise synthesis of two disaccharides (BC, BAcC) and four trisaccharides, representing portions and/or analogs of the O-antigens, is described. A protected intermediate compatible with late stage 3C-O-acetylation, and/or galactosyl (A°) to galacturonic acid (A) conversion, was designed and assembled from trichloroacetimidate and thioglycoside donors tuned for high yielding glycosylation and excellent stereocontrol. The galacturonic moiety was efficiently introduced from galactose using a TEMPO/NaOCl/NaClO2-based oxidation protocol optimized for full compatibility with sensitive moieties, such as allyl ethers and acetates. Final Pd/C-mediated deprotection provided the targets, including the propyl glycoside ABAcC, its non O-acetylated counterpart ABC, and the non acidic analogs A°BAcC and A°BC. The BC and ABC oligosaccharides are also portions of the O-antigen from Escherichia coli O147, which causes diarrhea in pigs

    Bis(2-sulfanylethyl)amido Peptides Enable Native Chemical Ligation at Proline and Minimize Deletion Side-Product Formation

    No full text
    Native chemical ligation of C-terminal peptidyl prolyl alkylthioesters with N-terminal cysteinyl peptides usually exhibits poor kinetic rates compared to other C-terminal amino acid residues. It is shown here that the reaction is accompanied by the formation of a deletion side product which is minimized by using a bis(2-sulfanylethyl)amido (SEA) thioester surrogate at a mildly acidic pH

    Selectively Activatable Latent Thiol and Selenolesters Simplify the Access to Cyclic or Branched Peptide Scaffolds

    No full text
    The cyclic dichalcogenides based on the bis­(2-chalcogenoethyl)­amide structure are latent <i>N</i>,<i>S</i> (SEA, chalcogen = S) or <i>N</i>,<i>Se</i> (SeEA, chalcogen = Se) acyl shift systems. The large difference in the reducing potential between SEA and SeEA dichalcogenides allows their sequential and selective activation by reduction. Based on these concepts, one-pot three or four peptide segment assembly processes were designed, facilitating access to branched or cyclic peptide scaffolds

    A novel DOTA-like building block with a picolinate arm for the synthesis of lanthanide complex-peptide conjugates with improved luminescence properties

    No full text
    International audienceCombination of complexes of trivalent lanthanide cations (Ln 3+) for their luminescent properties and peptides for their recognition properties or folding abilities is interesting in view of designing responsive luminescent probes. The octadentate DOTA chelate is the most popular chelate to design luminescent Ln 3+ complex-peptide conjugates. In this article, we describe a novel building block, DO3Apic-tris(allyl)ester, which provides access to peptides with a conjugated nonadentate chelate, namely DO3Apic, featuring a cyclen macrocycle functionalized by three acetate and one picolinamide arms, for improved luminescence properties. This building block, with allyl protecting groups, is readily obtained by solid phase synthesis. We show that it is superior to its analogue with tBu protecting groups for the preparation of peptide conjugates because of the difficult removal of the tBu protecting groups for the latter. Then, two Zn 2+-responsive luminescent probes, which rely on (i) a zinc finger scaffold for selective Zn 2+ binding, (ii) a Eu 3+ complex and (iii) an acridone antenna for long-wavelength sensitization of Eu 3+ luminescence, are compared. One of these probes, LZF3 ACD|Eu , incorporates a DOTA chelate whereas the other, LZF4 ACD|Eu , incorporates a DO3Apic chelate. We show that changing the octadentate DOTA for the nonadentate DO3Apic ligand results in a higher Eu 3+ luminescence lifetime and in a doubling of the quantum yield, confirming the interest of the DO3Apic chelate and the DO3Apic(tris(allyl)ester building block for the preparation of Ln 3+ complex-peptide conjugates. Additionally, the DO3Apic chelate provides self-calibration for LZF4 ACD|Eu luminescence upon excitation of its picolinamide chromophore, making LZF4 ACD|Eu a ratiometric sensor for Zn 2+ detection

    Reversible turn-on fluorescent Cu(II) sensors: rather dream than reality?

    Get PDF
    International audienc

    A terbium(III) luminescent ATCUN-based peptide sensor for selective and reversible detection of copper(II) in biological media

    No full text
    The measurement of exchangeable Cu2+ levels in biological samples is gaining interest in the context of copper-related pathologies. Here, we report a Tb3+ luminescent turn-off sensor for Cu2+ based on the specific and suitable-affinity Xxx-Zzz-His (ATCUN) peptide motif, enabling Cu2+ detection in the presence of a biological fluorescent background

    SEA Ligation Is Accelerated at Mildly Acidic pH. Application to the Formation of Difficult Peptide Junctions

    No full text
    The bis(2-sulfanylethyl)amido (SEA)-mediated ligation has been introduced in 2010 as a novel chemoselective peptide bond forming reaction. SEA ligation is a useful reaction for protein total synthesis that is complementary to the native chemical ligation (NCL). In particular, SEA ligation proceeds efficiently in a wide range of pH, from neutral pH to pH 3-4. Thus, the pH can be chosen to optimize the solubility of the peptide segments or final product. It can be also chosen to facilitate the formation of difficult junctions, since the rate of SEA ligation increases significantly by decreasing the pH from 7.2 to 4.0. Here we describe a protocol for SEA ligation at pH 5.5 in the presence of 4-mercaptophenylacetic acid (MPAA) or at pH 4.0 in the presence of a newly developed diselenol catalyst. The protocols describe the formation of a valyl-cysteinyl peptide bond between two model peptides.<br /
    corecore