93 research outputs found

    Aerofoil design for unmanned high-altitude aft-swept flying wings

    Get PDF
    In this paper, 12 new aerofoils with varying thicknesses for an aft-swept flying wing unmanned air vehicle have been designed using a MATLAB tool which has been developed in-house. The tool consists of 2 parts in addition to the aerodynamic solver XFOIL. The first part generates the aerofoil section geometry using a combination of PARSEC and Bezier-curve parameterisation functions. PARSEC parametrisation has been used to represent the camber line while the Bezier-curve has been used to select the thickness distribution. This combination is quite efficient in using an optimisation search process because of the capability to define a range of design variables that can quickly generate a suitable aerofoil. The second part contains the optimisation code using a genetic algorithm. The primary target here was to design a number of aerofoils with low pitching moment, suitable for an aft-swept flying wing configuration operating at low Reynolds number in the range of about 0.5 million. Three optimisation targets were set to achieve maximum aerodynamic performance characteristics. Each individual target was run separately to design several aerofoils of different thicknesses that meet the target criteria. According to the set of result obtained so far, the initial observation of the aerodynamic performance of the newly designed aerofoils is that the lift/drag ratio in general is higher than that of the existing ones used in many current-generation highaltitude long-endurance aircraft. Another observation is that increasing the maximum thickness of the aerofoil leads to a decrease in the maximum lift/drag ratio. In addition, as expected, this ratio sharply drops after the maximum value of some of these aerofoils

    The impact of altitude, latitude, and endurance duration on the design of a high altitude, solar powered unmanned aerial vehicle

    Get PDF
    In this paper, a previously developed conceptual design tool has been used to study the impact of the latitude, altitude, and the flight duration on the weight estimation and the main characteristics of a high altitude, long endurance and solar powered unmanned aerial vehicle. The available solar energy during the daylight hours has been calculated at given locations and altitudes for specific periods to be used in the pre-conceptual design stage. The pre-conceptual design methodology is based on an analytical and continuous method, which consists of establishing the relationships between all the components with analytical functions using the component characteristics. This design approach can directly provide a unique and optimal design. This study is conducted for a solar aircraft designed for a surveillance mission over Iraq. It is concluded that increasing the operational altitude can lead to a heavier aircraft in spite of the high levels of the available solar energy that can be absorbed. Hence, at high altitude, the surface area required for solar power generation is less than that needed to obtain adequate lift. Increasing the maximum solar irradiance during the daylight hours can lead to further lowering of the aircraft weight. Moreover, an increase in the daylight hours can be beneficial if the charging and discharging losses of the fuel cells are considered

    Vehicle Pair Activity Classification Using QTC and Long Short Term Memory Neural Network

    Get PDF
    The automated recognition of vehicle interaction is crucial for self-driving, collision avoidance and security surveillance applications. In this paper, we present a novel Long-Short Term Memory Neural Network (LSTM) based method for vehicle trajectory classification. We use Qualitative Trajectory Calculus (QTC) to represent the relative motion between a pair of vehicles. The spatio-temporal features of the interacting vehicles are captured as a sequence of QTC states and then encoded using one hot vector representation. Then, we develop an LSTM network to classify QTC trajectories that represent vehicle pairwise activities. Most of the high performing LSTM models are manually designed and require expertise in hyperparameter configuration. We adapt Bayesian Optimisation method to find an optimal LSTM architecture for classifying QTC trajectories of vehicle interaction. We evaluated our method on three different datasets comprising 7257 trajectories of 9 unique vehicle activities in different traffic scenarios. We demonstrate that our proposed method outperforms the state-of-the-art techniques. Further, we evaluated our approach with a combined dataset of the three datasets and achieved an error rate of no more than 1.79%. Though, our work mainly focuses on vehicle trajectories, the proposed method is generic and can be used on pairwise analysis of other interacting objects

    Composite structural analysis of a high altitude, solar powered unmanned aerial vehicle

    Get PDF
    In this paper, a development of a low order composite structure module has been introduced. This module can design the wing structure for the given aerodynamic load. The wing structure is broken down into non-spar elements and spars. The weight of non-spar elements is estimated by using empirical equations that were used by NASA for solar powered high altitude UAVs. The Spar is sized by using a numerical approach, which is developed in this paper. The spar is modelled as a composite rectangular wing-box and assumed to withstand the entire load with no contribution from the secondary wing components. The required numbers of laminate on each side of the spar are found iteratively until no failure or buckling is detected. The orientation of laminate of each side of spar was inspired by the existing high altitude aircraft structure. A linear finite beam element is used to evaluate the wing-box deflection under the internal and the aerodynamic loads while only a quasi-static equilibrium is considered during the sizing process. The module has been written in MATLAB. This tool can be used either in the conceptual design stage or in an optimisation process because it facilitates rapid computation. This module has been validated with a high order commercial package (ANSYS). The deflection calculation shows excellent agreement with less than 0.25 % error. The stress calculations show a reasonable agreement with ANSYS with maximum error margin of about 4% at the maximum shear stress level. However, this amount of error could be unimportant as a high factor of safety is usually taken in the design of composite structures. The weight prediction function also has been validated using reference to a NASA Pathfinder aircraft. The predicted weight seems reasonable with a 1.6 % difference from the expected weight of the case study

    A molecular-based identification resource for the arthropods of Finland

    Get PDF
    Publisher Copyright: © 2021 The Authors. Molecular Ecology Resources published by John Wiley & Sons Ltd.To associate specimens identified by molecular characters to other biological knowledge, we need reference sequences annotated by Linnaean taxonomy. In this study, we (1) report the creation of a comprehensive reference library of DNA barcodes for the arthropods of an entire country (Finland), (2) publish this library, and (3) deliver a new identification tool for insects and spiders, as based on this resource. The reference library contains mtDNA COI barcodes for 11,275 (43%) of 26,437 arthropod species known from Finland, including 10,811 (45%) of 23,956 insect species. To quantify the improvement in identification accuracy enabled by the current reference library, we ran 1000 Finnish insect and spider species through the Barcode of Life Data system (BOLD) identification engine. Of these, 91% were correctly assigned to a unique species when compared to the new reference library alone, 85% were correctly identified when compared to BOLD with the new material included, and 75% with the new material excluded. To capitalize on this resource, we used the new reference material to train a probabilistic taxonomic assignment tool, FinPROTAX, scoring high success. For the full-length barcode region, the accuracy of taxonomic assignments at the level of classes, orders, families, subfamilies, tribes, genera, and species reached 99.9%, 99.9%, 99.8%, 99.7%, 99.4%, 96.8%, and 88.5%, respectively. The FinBOL arthropod reference library and FinPROTAX are available through the Finnish Biodiversity Information Facility (www.laji.fi) at https://laji.fi/en/theme/protax. Overall, the FinBOL investment represents a massive capacity-transfer from the taxonomic community of Finland to all sectors of society.Peer reviewe

    A molecular-based identification resource for the arthropods of Finland

    Get PDF
    To associate specimens identified by molecular characters to other biological knowledge, we need reference sequences annotated by Linnaean taxonomy. In this study, we (1) report the creation of a comprehensive reference library of DNA barcodes for the arthropods of an entire country (Finland), (2) publish this library, and (3) deliver a new identification tool for insects and spiders, as based on this resource. The reference library contains mtDNA COI barcodes for 11,275 (43%) of 26,437 arthropod species known from Finland, including 10,811 (45%) of 23,956 insect species. To quantify the improvement in identification accuracy enabled by the current reference library, we ran 1000 Finnish insect and spider species through the Barcode of Life Data system (BOLD) identification engine. Of these, 91% were correctly assigned to a unique species when compared to the new reference library alone, 85% were correctly identified when compared to BOLD with the new material included, and 75% with the new material excluded. To capitalize on this resource, we used the new reference material to train a probabilistic taxonomic assignment tool, FinPROTAX, scoring high success. For the full-length barcode region, the accuracy of taxonomic assignments at the level of classes, orders, families, subfamilies, tribes, genera, and species reached 99.9%, 99.9%, 99.8%, 99.7%, 99.4%, 96.8%, and 88.5%, respectively. The FinBOL arthropod reference library and FinPROTAX are available through the Finnish Biodiversity Information Facility (www.laji.fi) at https://laji.fi/en/theme/protax. Overall, the FinBOL investment represents a massive capacity-transfer from the taxonomic community of Finland to all sectors of society.</p

    Assessment of Response of Neoadjuvant Chemotheraphy in Locally Advanced Breast Carcinoma using Ki-67 as a Proliferative Marker

    No full text
    INTRODUCTION: While an enormous amount of information still remains intricately hidden with the human genome, research today is slowly but steadily decoding it. Every piece of data thus garnered alters to some extent our current understanding of malignancies and opens up new avenues for their management. Carcinoma [CA] of the breast is one of the most common malignancies encountered in the General Surgery Out Patient Department & operated on at Government Rajaji Hospital, Madurai. Patients, mainly from lower socioeconomic strata, often present with either palpable lump or in a more advanced stage. AIM OF THE STUDY: This study is aimed at assessing the response of neoadjuvant chemotheraphy in locally advanced breast carcinomas using Ki-67 as a proliferative marker. METHODOLOGY: This is a prospective randomised case control study done for the period of one year from May 2018 to May 2019. Patients from surgical OPD or casualty presenting with breast lump proven for malignancy in GRH Madurai are recruited. The patients were diagnosed on the basis of history, clinical examination and investigations like core needle biopsy, USG breasts with axilla. ER, PR, HER2 neu status were assessed along with Ki-67 index. 60 patients were recruited for this study. Patient were categorized into 2 groups based on Ki-67 index (low - 20%). Patients were subjected to neoadjuvant chemotheraphy and reassessed following its completion. RESULTS: In low Ki-67 index group 53.30% were in Stage IIIc and 46.70% were in Stage IIIB. Following Neoadjuvant chemotheraphy 53.30% downstaged to Stage IIIA, 30% to Stage IIB. In High Ki -67 index group 66.70% were in Stage IIIC and 33.30% were in Stage IIIB. Following Neoadjuvant chemotheraphy 66.70 % downsatged to Stage IA and 20% to Stage IB and 13.30% to Stage IIA. CONCLUSION: From our study we concluded that KI -67 a proliferative marker can be used to assess the response of neoadjuvant chemotheraphy. Tumors with high index of Ki-67 respond significantly well to chemotheraphy and it can be used to assess the achievement of a pathological complete response. Neoadjuvant chemotherapy reduces tumor size, which enables patients who were initially inoperable to undergo mastectomy and makes breast-conserving surgery possible in patients who otherwise would have required mastectomy
    • …
    corecore