266 research outputs found

    Exact protein distributions for stochastic models of gene expression using partitioning of Poisson processes

    Get PDF
    Stochasticity in gene expression gives rise to fluctuations in protein levels across a population of genetically identical cells. Such fluctuations can lead to phenotypic variation in clonal populations, hence there is considerable interest in quantifying noise in gene expression using stochastic models. However, obtaining exact analytical results for protein distributions has been an intractable task for all but the simplest models. Here, we invoke the partitioning property of Poisson processes to develop a mapping that significantly simplifies the analysis of stochastic models of gene expression. The mapping leads to exact protein distributions using results for mRNA distributions in models with promoter-based regulation. Using this approach, we derive exact analytical results for steady-state and time-dependent distributions for the basic 2-stage model of gene expression. Furthermore, we show how the mapping leads to exact protein distributions for extensions of the basic model that include the effects of post-transcriptional and post-translational regulation. The approach developed in this work is widely applicable and can contribute to a quantitative understanding of stochasticity in gene expression and its regulation.Comment: 10 pages, 5 figure

    A New Hybrid Technique for Beading and Boxing of Complete Denture Final Impressions

    Get PDF
    Introduction: The purpose of beading & boxing of an impression is to obtain an accurate cast with proper border & base thickness for fabrication of restorations. Beading is the protection of the formed border thickness of the final impressions & Boxing of an impression is building up vertical walls around it. Aim: The purpose of this hybrid technique of beading and boxing is to produce a smooth & aesthetically acceptable cast with accurate border thickness using a simple procedure. Materials & Methods: In this hybrid technique of beading and boxing an impression, a uniform layer of modeling wax was applied over the beading of a plaster-pumice mixture around an impression; after that, boxing & pouring of an impression was done to retrieve a cast. Results: Casts obtained by hybrid technique was more accurate in border thickness & more aesthetic in comparison to the cast obtained by wax technique of beading & boxing. Conclusion: Beading and boxing of an impression is done to protect the formed border thickness of an impression, regulate the height & size of the cast, avoid undue trimming of the cast and to eliminate distortion associated with slumping of the gypsum material when an impression is inverted. This hybrid technique of beading and boxing eliminates the need for applying separating media over the beading of a plaster-pumice mixture and by this technique retrieval of the cast from the impression is very easy and quick. The resulted cast will be very neat and clean with accurate thickness of the borders and base of the cast .This technique is suitable for impressions made from almost any type of impression material

    Connecting protein and mRNA burst distributions for stochastic models of gene expression

    Full text link
    The intrinsic stochasticity of gene expression can lead to large variability in protein levels for genetically identical cells. Such variability in protein levels can arise from infrequent synthesis of mRNAs which in turn give rise to bursts of protein expression. Protein expression occurring in bursts has indeed been observed experimentally and recent studies have also found evidence for transcriptional bursting, i.e. production of mRNAs in bursts. Given that there are distinct experimental techniques for quantifying the noise at different stages of gene expression, it is of interest to derive analytical results connecting experimental observations at different levels. In this work, we consider stochastic models of gene expression for which mRNA and protein production occurs in independent bursts. For such models, we derive analytical expressions connecting protein and mRNA burst distributions which show how the functional form of the mRNA burst distribution can be inferred from the protein burst distribution. Additionally, if gene expression is repressed such that observed protein bursts arise only from single mRNAs, we show how observations of protein burst distributions (repressed and unrepressed) can be used to completely determine the mRNA burst distribution. Assuming independent contributions from individual bursts, we derive analytical expressions connecting means and variances for burst and steady-state protein distributions. Finally, we validate our general analytical results by considering a specific reaction scheme involving regulation of protein bursts by small RNAs. For a range of parameters, we derive analytical expressions for regulated protein distributions that are validated using stochastic simulations. The analytical results obtained in this work can thus serve as useful inputs for a broad range of studies focusing on stochasticity in gene expression

    Double Investment Technique of Hollow Bulb Denture Obturator Fabrication in a Completely Edentulous Patient

    Get PDF
    Introduction: Prosthodontic management of palatal defects has been employed for many years. Palatal defects of any extent cause multiple problems in speech, mastication and aesthetics. Obturator prosthesis for an edentulous patient is more critical in terms of its movements as there is no mechanical retention available. Obturators and facial prostheses are important not only for rehabilitation and aesthetics, but also in patient resocialisation. Maxillary defects are created by surgical treatments of benign or malignant neoplasms and by trauma, in which case, denture is supported only by the underlying residual ridge and the defect. This clinical report describes the rehabilitation of a maxillary resected patient with a single piece hollow bulb denture obturator fabricated by double investment technique. Materials & Methods: In this double investment technique of hollow bulb denture obturator fabrication two same size transposable flasks were used for flasking and curing of the prosthesis. Results: Hollow bulb denture obturator was obtained by this double investment technique. Conclusion:  Decreased weight of prosthesis positively affects retention leading to improved physiologic function, and it also does not cause excessive atrophy in muscle balance

    Risk Management and Mitigation for Building Construction Project in Sangli District

    Get PDF
    Risk analysis as the title suggests this is related to the construction management. Risk analysing technique is used for the purpose of risk management. Which type of risk is occurring and how it is analysed what are various mitigatory methods available. Risk management involves assessing the risk sources and designing strategies and procedures to mitigate those risks to an acceptable level. Measurement of risk factors plays an important role in the assessment of risk. This research proposes to develop risk assessment frameworks and mathematical model to identify the risk factors. Quantification and prioritization of risk factors will help to design controls, resource allocation policies and minimize the total cost. The proposed model can be applied to a complex system that is representative of actual business situations

    Surfactant protein D inhibits HIV-1 infection of target cells via interference with gp120-CD4 interaction and modulates pro-inflammatory cytokine production

    Get PDF
    © 2014 Pandit et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Surfactant Protein SP-D, a member of the collectin family, is a pattern recognition protein, secreted by mucosal epithelial cells and has an important role in innate immunity against various pathogens. In this study, we confirm that native human SP-D and a recombinant fragment of human SP-D (rhSP-D) bind to gp120 of HIV-1 and significantly inhibit viral replication in vitro in a calcium and dose-dependent manner. We show, for the first time, that SP-D and rhSP-D act as potent inhibitors of HIV-1 entry in to target cells and block the interaction between CD4 and gp120 in a dose-dependent manner. The rhSP-D-mediated inhibition of viral replication was examined using three clinical isolates of HIV-1 and three target cells: Jurkat T cells, U937 monocytic cells and PBMCs. HIV-1 induced cytokine storm in the three target cells was significantly suppressed by rhSP-D. Phosphorylation of key kinases p38, Erk1/2 and AKT, which contribute to HIV-1 induced immune activation, was significantly reduced in vitro in the presence of rhSP-D. Notably, anti-HIV-1 activity of rhSP-D was retained in the presence of biological fluids such as cervico-vaginal lavage and seminal plasma. Our study illustrates the multi-faceted role of human SPD against HIV-1 and potential of rhSP-D for immunotherapy to inhibit viral entry and immune activation in acute HIV infection. © 2014 Pandit et al.The work (Project no. 2011-16850) was supported by Medical Innovation Fund of Indian Council of Medical Research, New Delhi, India (www.icmr.nic.in/)

    ZTF Early Observations of Type Ia Supernovae. III. Early-time Colors As a Test for Explosion Models and Multiple Populations

    Get PDF
    Colors of Type Ia supernovae (SNe Ia) in the first few days after explosion provide a potential discriminant between different models. In this paper, we present g-r colors of 65 SNe Ia discovered within 5 days from first light by the Zwicky Transient Facility in 2018, a sample that is about three times larger than that in the literature. We find that g-r colors are intrinsically rather homogeneous at early phases, with about half of the dispersion attributable to photometric uncertainties (σnoise ∼ σ int ∼ 0.18 mag). Colors are nearly constant starting from 6 days after first light (g-r ∼-0.15 mag), while the time evolution at earlier epochs is characterized by a continuous range of slopes, from events rapidly transitioning from redder to bluer colors (slope of ∼-0.25 mag day-1) to events with a flatter evolution. The continuum in the slope distribution is in good agreement both with models requiring some amount of 56Ni mixed in the outermost regions of the ejecta and with "double-detonation"models having thin helium layers MHe=0.01 M⊙) and varying carbon-oxygen core masses. At the same time, six events show evidence for a distinctive "red bump"signature predicted by double-detonation models with larger helium masses. We finally identify a significant correlation between the early-time g-r slopes and supernova brightness, with brighter events associated to flatter color evolution (p-value = 0.006). The distribution of slopes, however, is consistent with being drawn from a single population, with no evidence for two components as claimed in the literature based on B-V colors

    ZTF Early Observations of Type Ia Supernovae. III. Early-time Colors As a Test for Explosion Models and Multiple Populations

    Get PDF
    Colors of Type Ia supernovae (SNe Ia) in the first few days after explosion provide a potential discriminant between different models. In this paper, we present g − r colors of 65 SNe Ia discovered within 5 days from first light by the Zwicky Transient Facility in 2018, a sample that is about three times larger than that in the literature. We find that g − r colors are intrinsically rather homogeneous at early phases, with about half of the dispersion attributable to photometric uncertainties (σ_(noise)∼σ_(int) ~ 0.18 mag). Colors are nearly constant starting from 6 days after first light (g − r ~ −0.15 mag), while the time evolution at earlier epochs is characterized by a continuous range of slopes, from events rapidly transitioning from redder to bluer colors (slope of ~−0.25 mag day⁻¹) to events with a flatter evolution. The continuum in the slope distribution is in good agreement both with models requiring some amount of ⁵⁶Ni mixed in the outermost regions of the ejecta and with "double-detonation" models having thin helium layers (M_(He) = 0.01 M_⊙) and varying carbon–oxygen core masses. At the same time, six events show evidence for a distinctive "red bump" signature predicted by double-detonation models with larger helium masses. We finally identify a significant correlation between the early-time g − r slopes and supernova brightness, with brighter events associated to flatter color evolution (p-value = 0.006). The distribution of slopes, however, is consistent with being drawn from a single population, with no evidence for two components as claimed in the literature based on B − V colors

    LSST Science Book, Version 2.0

    Get PDF
    A survey that can cover the sky in optical bands over wide fields to faint magnitudes with a fast cadence will enable many of the exciting science opportunities of the next decade. The Large Synoptic Survey Telescope (LSST) will have an effective aperture of 6.7 meters and an imaging camera with field of view of 9.6 deg^2, and will be devoted to a ten-year imaging survey over 20,000 deg^2 south of +15 deg. Each pointing will be imaged 2000 times with fifteen second exposures in six broad bands from 0.35 to 1.1 microns, to a total point-source depth of r~27.5. The LSST Science Book describes the basic parameters of the LSST hardware, software, and observing plans. The book discusses educational and outreach opportunities, then goes on to describe a broad range of science that LSST will revolutionize: mapping the inner and outer Solar System, stellar populations in the Milky Way and nearby galaxies, the structure of the Milky Way disk and halo and other objects in the Local Volume, transient and variable objects both at low and high redshift, and the properties of normal and active galaxies at low and high redshift. It then turns to far-field cosmological topics, exploring properties of supernovae to z~1, strong and weak lensing, the large-scale distribution of galaxies and baryon oscillations, and how these different probes may be combined to constrain cosmological models and the physics of dark energy.Comment: 596 pages. Also available at full resolution at http://www.lsst.org/lsst/sciboo
    corecore