225 research outputs found

    On the role of AGN feedback on the thermal and chemodynamical properties of the hot intra-cluster medium

    Get PDF
    We present an analysis of the properties of the ICM in an extended set of cosmological hydrodynamical simulations of galaxy clusters and groups performed with the TreePM+SPH GADGET-3 code. Besides a set of non-radiative simulations, we carried out two sets of simulations including radiative cooling, star formation, metal enrichment and feedback from supernovae, one of which also accounts for the effect of feedback from AGN resulting from gas accretion onto super-massive black holes. These simulations are analysed with the aim of studying the relative role played by SN and AGN feedback on the general properties of the diffuse hot baryons in galaxy clusters and groups: scaling relations, temperature, entropy and pressure radial profiles, and ICM chemical enrichment. We find that simulations including AGN feedback produce scaling relations that are in good agreement with X-ray observations at all mass scales. However, our simulations are not able to account for the observed diversity between CC and NCC clusters: unlike for observations, we find that temperature and entropy profiles of relaxed and unrelaxed clusters are quite similar and resemble more the observed behaviour of NCC clusters. As for the pattern of metal enrichment, we find that an enhanced level of iron abundance is produced by AGN feedback with respect to the case of purely SN feedback. As a result, while simulations including AGN produce values of iron abundance in groups in agreement with observations, they over-enrich the ICM in massive clusters. The efficiency of AGN feedback in displacing enriched gas from halos into the inter-galactic medium at high redshift also creates a widespread enrichment in the outskirts of clusters and produces profiles of iron abundance whose slope is in better agreement with observations.Comment: 23 pages, 14 figures, 1 table, accepted for publication in MNRA

    Cool Core Clusters from Cosmological Simulations

    Get PDF
    We present results obtained from a set of cosmological hydrodynamic simulations of galaxy clusters, aimed at comparing predictions with observational data on the diversity between cool-core (CC) and non-cool-core (NCC) clusters. Our simulations include the effects of stellar and AGN feedback and are based on an improved version of the smoothed particle hydrodynamics code GADGET-3, which ameliorates gas mixing and better captures gas-dynamical instabilities by including a suitable artificial thermal diffusion. In this Letter, we focus our analysis on the entropy profiles, the primary diagnostic we used to classify the degree of cool-coreness of clusters, and on the iron profiles. In keeping with observations, our simulated clusters display a variety of behaviors in entropy profiles: they range from steadily decreasing profiles at small radii, characteristic of cool-core systems, to nearly flat core isentropic profiles, characteristic of non-cool-core systems. Using observational criteria to distinguish between the two classes of objects, we find that they occur in similar proportions in both simulations and in observations. Furthermore, we also find that simulated cool-core clusters have profiles of iron abundance that are steeper than those of NCC clusters, which is also in agreement with observational results. We show that the capability of our simulations to generate a realistic cool-core structure in the cluster population is due to AGN feedback and artificial thermal diffusion: their combined action allows us to naturally distribute the energy extracted from super-massive black holes and to compensate for the radiative losses of low-entropy gas with short cooling time residing in the cluster core.Comment: 6 pages, 4 figures, accepted in ApJL, v2 contains some modifications on the text (results unchanged

    Cosmological hydrodynamical simulations of galaxy clusters: X-ray scaling relations and their evolution

    Get PDF
    We analyse cosmological hydrodynamical simulations of galaxy clusters to study the X-ray scaling relations between total masses and observable quantities such as X-ray luminosity, gas mass, X-ray temperature, and YXY_{X}. Three sets of simulations are performed with an improved version of the smoothed particle hydrodynamics GADGET-3 code. These consider the following: non-radiative gas, star formation and stellar feedback, and the addition of feedback by active galactic nuclei (AGN). We select clusters with M500>1014ME(z)1M_{500} > 10^{14} M_{\odot} E(z)^{-1}, mimicking the typical selection of Sunyaev-Zeldovich samples. This permits to have a mass range large enough to enable robust fitting of the relations even at z2z \sim 2. The results of the analysis show a general agreement with observations. The values of the slope of the mass-gas mass and mass-temperature relations at z=2z=2 are 10 per cent lower with respect to z=0z=0 due to the applied mass selection, in the former case, and to the effect of early merger in the latter. We investigate the impact of the slope variation on the study of the evolution of the normalization. We conclude that cosmological studies through scaling relations should be limited to the redshift range z=01z=0-1, where we find that the slope, the scatter, and the covariance matrix of the relations are stable. The scaling between mass and YXY_X is confirmed to be the most robust relation, being almost independent of the gas physics. At higher redshifts, the scaling relations are sensitive to the inclusion of AGNs which influences low-mass systems. The detailed study of these objects will be crucial to evaluate the AGN effect on the ICM.Comment: 24 pages, 11 figures, 5 tables, replaced to match accepted versio

    Evidence of major dry mergers at M* > 2 x 10^11 Msun from curvature in early-type galaxy scaling relations?

    Full text link
    For early-type galaxies, the correlations between stellar mass and size, velocity dispersion, surface brightness, color, axis ratio and color-gradient all indicate that two mass scales, M* = 3 x 10^10 Msun and M* = 2 x 10^11 Msun, are special. The smaller scale could mark the transition between wet and dry mergers, or it could be related to the interplay between SN and AGN feedback, although quantitative measures of this transition may be affected by morphological contamination. At the more massive scale, mean axis ratios and color gradients are maximal, and above it, the colors are redder, the sizes larger and the velocity dispersions smaller than expected based on the scaling at lower M*. In contrast, the color-sigma relation, and indeed, most scaling relations with sigma, are not curved: they are well-described by a single power law, or in some cases, are almost completely flat. When major dry mergers change masses, sizes, axis ratios and color gradients, they are expected to change the colors or velocity dispersions much less. Therefore, the fact that scaling relations at sigma > 150 km/s show no features, whereas the size-M*, b/a-M*, color-M* and color gradient-M* relations do, suggests that M* = 2 x 10^11 Msun is the scale above which major dry mergers dominate the assembly histories of early-type galaxies.Comment: 5 pages, 3 figures. Accepted for publication in MNRA

    High prevalence of anti-hepatitis e virus antibodies among blood donors in central Italy, february to march 2014

    Get PDF
    Prevalence of anti-hepatitis E virus (HEV) antibodies is highly variable in developed countries, which seems partly due to differences in assay sensitivity. Using validated sensitive assays, we tested 313 blood donors attending a hospital transfusion unit in central Italy in January and February 2014 for anti-HEV IgG and IgM and HEV RNA. Data on HEV exposure were collected from all donors. Overall anti-HEV IgG prevalence was 49% (153/313). Eating raw dried pig-liver sausage was the only independent predictor of HEV infection (adjusted prevalence rate ratio = 2.14; 95% confidence interval: 1.23–3.74). Three donors were positive for either anti-HEV IgM (n = 2; 0.6%) or HEV RNA (n = 2; 0.6%); they were completely asymptomatic, without alanine aminotransferase (ALT) abnormalities. Of the two HEV RNA-positive donors (both harbouring genotype 3), one was anti-HEV IgG- and IgM-positive, the other was anti-HEV IgG- and IgM-negative. The third donor was positive for anti-HEV IgG and IgM but HEV RNA-negative. HEV infection is therefore hyperendemic among blood donors (80% men 18–64 years-old) from central Italy and associated with local dietary habits. Nearly 1% of donors have acute or recent infection, implying potential transmission to blood recipients. Neither ALT nor anti-HEV IgM testing seems useful to prevent transfusion-transmitted HEV infection. © 2016, European Centre for Disease Prevention and Control

    Pressure of the hot gas in simulations of galaxy clusters

    Get PDF
    14siWe analyse the radial pressure profiles, the intracluster medium (ICM) clumping factor and the Sunyaev-Zel'dovich (SZ) scaling relations of a sample of simulated galaxy clusters and groups identified in a set of hydrodynamical simulations based on an updated version of the treepm-SPH GADGET-3 code. Three different sets of simulations are performed: the first assumes non-radiative physics, the others include, among other processes, active galactic nucleus (AGN) and/or stellar feedback. Our results are analysed as a function of redshift, ICM physics, cluster mass and cluster cool-coreness or dynamical state. In general, the mean pressure profiles obtained for our sample of groups and clusters show a good agreement with X-ray and SZ observations. Simulated cool-core (CC) and non-cool-core (NCC) clusters also show a good match with real data. We obtain in all cases a small (if any) redshift evolution of the pressure profiles of massive clusters, at least back to z = 1. We find that the clumpiness of gas density and pressure increases with the distance from the cluster centre and with the dynamical activity. The inclusion of AGN feedback in our simulations generates values for the gas clumping (√{C}_{ρ }˜ 1.2 at R200) in good agreement with recent observational estimates. The simulated YSZ-M scaling relations are in good accordance with several observed samples, especially for massive clusters. As for the scatter of these relations, we obtain a clear dependence on the cluster dynamical state, whereas this distinction is not so evident when looking at the subsamples of CC and NCC clusters.openopenPlanelles, S.; Fabjan, D.; Borgani, S.; Murante, G.; Rasia, E.; Biffi, V.; Truong, N.; Ragone-Figueroa, C.; Granato, G. L.; Dolag, K.; Pierpaoli, E.; Beck, A. M.; Steinborn, Lisa K.; Gaspari, M.Planelles, S.; Fabjan, D.; Borgani, Stefano; Murante, G.; Rasia, E.; Biffi, Veronica; Truong, N.; Ragone Figueroa, C.; Granato, G. L.; Dolag, K.; Pierpaoli, E.; Beck, A. M.; Steinborn, Lisa K.; Gaspari, M

    Simulation-based marginal likelihood for cluster strong lensing cosmology

    Get PDF
    Comparisons between observed and predicted strong lensing properties of galaxy clusters have been routinely used to claim either tension or consistency with \u39b cold dark matter cosmology. However, standard approaches to such cosmological tests are unable to quantify the preference for one cosmology over another. We advocate approximating the relevant Bayes factor using a marginal likelihood that is based on the following summary statistic: the posterior probability distribution function for the parameters of the scaling relation between Einstein radii and cluster mass, \u3b1 and \u3b2. We demonstrate, for the first time, a method of estimating the marginal likelihood using the X-ray selected z > 0.5 Massive Cluster Survey clusters as a case in point and employing both N-body and hydrodynamic simulations of clusters. We investigate the uncertainty in this estimate and consequential ability to compare competing cosmologies, which arises from incomplete descriptions of baryonic processes, discrepancies in cluster selection criteria, redshift distribution and dynamical state. The relation between triaxial cluster masses at various overdensities provides a promising alternative to the strong lensing test

    Modelling the shapes of the largest gravitationally bound objects

    Full text link
    We combine the physics of the ellipsoidal collapse model with the excursion set theory to study the shapes of dark matter halos. In particular, we develop an analytic approximation to the nonlinear evolution that is more accurate than the Zeldovich approximation; we introduce a planar representation of halo axis ratios, which allows a concise and intuitive description of the dynamics of collapsing regions and allows one to relate the final shape of a halo to its initial shape; we provide simple physical explanations for some empirical fitting formulae obtained from numerical studies. Comparison with simulations is challenging, as there is no agreement about how to define a non-spherical gravitationally bound object. Nevertheless, we find that our model matches the conditional minor-to-intermediate axis ratio distribution rather well, although it disagrees with the numerical results in reproducing the minor-to-major axis ratio distribution. In particular, the mass dependence of the minor-to-major axis distribution appears to be the opposite to what is found in many previous numerical studies, where low-mass halos are preferentially more spherical than high-mass halos. In our model, the high-mass halos are predicted to be more spherical, consistent with results based on a more recent and elaborate halo finding algorithm, and with observations of the mass dependence of the shapes of early-type galaxies. We suggest that some of the disagreement with some previous numerical studies may be alleviated if we consider only isolated halos.Comment: 15 pages, 8 figures. New appendix added, extended discussion. Matches version accepted by MNRA

    Neutral hydrogen in galaxy clusters: impact of AGN feedback and implications for intensity mapping

    Get PDF
    By means of zoom-in hydrodynamic simulations, we quantify the amount of neutral hydrogen (H i) hosted by groups and clusters of galaxies. Our simulations, which are based on an improved formulation of smoothed particle hydrodynamics, include radiative cooling, star formation, metal enrichment and supernova feedback, and can be split into two different groups, depending on whether feedback from active galactic nuclei (AGN) is turned on or off. Simulations are analysed to account for H I self-shielding and the presence of molecular hydrogen. We find that the mass in neutral hydrogen of dark matter haloes monotonically increases with the halo mass and can be well described by a power law of the form MH I(M, Z) 1d M3/4. Our results point out that AGN feedback reduces both the total halo mass and its H i mass, although it is more efficient in removing H i. We conclude that AGN feedback reduces the neutral hydrogen mass of a given halo by ~50 per cent, with a weak dependence on halo mass and redshift. The spatial distribution of neutral hydrogen within haloes is also affected by AGN feedback, whose effect is to decrease the fraction of H i that resides in the halo inner regions. By extrapolating our results to haloes not resolved in our simulations, we derive astrophysical implications from the measurements of \u3a9H I(Z): haloes with circular velocities larger than ~25 km s-1 are needed to host H i in order to reproduce observations. We find that only the model with AGN feedback is capable of reproducing the value of \u3a9HIbHI derived from available 21 cm intensity mapping observations. \ua9 2016 The Authors
    corecore